# Geocoding **Repository Path**: DDALL/Geocoding ## Basic Information - **Project Name**: Geocoding - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-07 - **Last Updated**: 2024-04-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Geocoding ![Mac](https://img.shields.io/badge/MacOS-pass-success) ![Linux](https://img.shields.io/badge/Linux-pass-success) ![Windows](https://img.shields.io/badge/Windows-bug-red) [![PypiVersion](https://img.shields.io/badge/pypi-1.4.5-blue)](https://pypi.org/project/GeocodingCHN/) [![JarVersion](https://img.shields.io/badge/jar-v1.3.1_build_2023.09.07-blue)](https://github.com/IceMimosa/geocoding) [![Python wheels](https://img.shields.io/badge/wheels-%E2%9C%93-4c1.svg?longCache=true&style=flat-square&logo=python&logoColor=white)](https://github.com/casuallyName/Geocoding/releases) * 该模块用于将不规范(或者连续)的文本地址进行尽可能的标准化, 以及对两个地址进行相似度的计算 * 该模块为 [bitlap/geocoding](https://github.com/bitlap/geocoding) 项目的Python封装,原项目为Kotlin开发 * 为方便使用Python方法调用,这里使用Python的`jpype`模块将 [bitlap/geocoding](https://github.com/bitlap/geocoding) 进行封装,因此该模块需要Java环境的支持(需要添加JAVA_HOME等环境变量) * `GeocodingCHN`重新加载功能在Windows平台上可能会遇到错误,参考[Jpype Changelog](https://jpype.readthedocs.io/en/latest/CHANGELOG.html) 1.2.0 - 2020-11-29 更新信息。 * 安装命令 `pip install GeocodingCHN` ## 更新信息: ## 1.4.5 1. 修复`MatchedResult`无法解析空结果的问题 ## 1.4.4 1. 修复无法创建`Address`实例的问题 ## 1.4.3 1. 添加`save`方法用于生成自定义的dat字典文件 2. 添加`match`方法用于深度优先匹配符合输入的地址信息 3. 添加`analyze`方法用于地址切分 ## 1.4.2 修复 无法添加自定义地址问题,并更新jar包至1.3.1 ## 1.4.1 随[原项目](https://github.com/bitlap/geocoding)更新jar包,并适配新增功能。 [新增功能](https://github.com/bitlap/geocoding/releases/tag/v1.3.0): - [x] `GeocodingCHN.Geocoding`新增参数设定(为适配`org.bitlap.geocoding.GeocodingX`类) * 新增`data_class_path`参数,支持自定义地址文件路径,要求该路径为文件绝对路径,默认使用内置地址`core/region.dat` * 新增`strict`参数,默认 `False`。当发现没有省和市,且匹配的父项数量等于1时,能成功匹配。 * `True`: 严格模式,当发现没有省和市,且匹配的父项数量大于1时,返回 `None` * `False`: 非严格模式,当发现没有省和市,且匹配的父项数量大于1时,匹配随机一项省和市 * 新增`jvm_path`,允许设置JVM路径,但要求该路径为文件绝对路径 - [x] `addRegionEntry` 方法新增 `replace` 参数,表示是否替换旧地址,默认为`True` 其他更新: - [x] 区分 `similarityWithResult` 与 `similarity` 方法,`similarityWithResult` 返回MatchedResult类型结果,`similarity` 返回float类型结果 - [x] 封装分词方法 `segment` ## GeocodingCHN.Geocoding ```python from GeocodingCHN import Geocoding geocoding = Geocoding(data_class_path="core/region.dat", strict= False, jvm_path= None) ``` * data_class_path : 自定义地址文件路径 * strict : 模式设置 * jvm_path : JVM路径 ### GeocodingCHN.Geocoding.normalizing 提供地址标准化 `normalizing(address) -> Address` * address: 文本地址 ```python from GeocodingCHN import Geocoding geocoding = Geocoding() text = '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户' address_nor = geocoding.normalizing(text) print(address_nor) ``` ``` Address( provinceId=370000000000, province=山东省, cityId=370200000000, city=青岛市, districtId=370213000000, district=李沧区, streetId=0, street=, townId=0, town=, villageId=0, village=, road=延川路, roadNum=116号, buildingNum=7号楼2单元802户, text=绿城城园东区 ) ``` ### GeocodingCHN.Geocoding.similarityWithResult 地址相似度计算,返回详细结果 `similarityWithResult(Address1:Address, Address2:Address) -> MatchedResult` * Address1: 地址1, 由 normalizing 方法返回的 Address 类 * Address2: 地址2, 由 normalizing 方法返回的 Address 类 ```python from GeocodingCHN import Geocoding geocoding = Geocoding() text1 = '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户' text2 = '山东青岛李沧区延川路绿城城园东区7-2-802' Address_1 = geocoding.normalizing(text1) Address_2 = geocoding.normalizing(text2) print(geocoding.similarityWithResult(Address_1, Address_2)) ``` ``` MatchedResult( doc1=Document(terms=[Term(延川路), Term(116号), Term(7), Term(2), Term(802), Term(绿城), Term(城), Term(园), Term(东区)], town=None, village=None, road=Term(延川路), roadNum=Term(116号), roadNumValue=116), doc2=Document(terms=[Term(延川路), Term(7), Term(2), Term(802), Term(绿城), Term(城), Term(园), Term(东区)], town=None, village=None, road=Term(延川路), roadNum=None, roadNumValue=0), terms=['MatchedTerm(Term(延川路), coord=-1.0, density=-1.0, boost=2.0, tfidf=8.0)', 'MatchedTerm(Term(7), coord=-1.0, density=-1.0, boost=1.0, tfidf=2.0)', 'MatchedTerm(Term(2), coord=-1.0, density=-1.0, boost=1.0, tfidf=2.0)', 'MatchedTerm(Term(802), coord=-1.0, density=-1.0, boost=1.0, tfidf=2.0)', 'MatchedTerm(Term(绿城), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)', 'MatchedTerm(Term(城), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)', 'MatchedTerm(Term(园), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)', 'MatchedTerm(Term(东区), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)'], similarity=0.9473309334313418 ) ``` ### GeocodingCHN.Geocoding.similarity 地址相似度计算 `similarityWithResult(Address1:[Address, str], Address2:[Address, str])` * Address1: 地址1, Address类 或 文本 * Address2: 地址2, Address类 或 文本 ```python from GeocodingCHN import Geocoding geocoding = Geocoding() text1 = '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户' text2 = '山东青岛李沧区延川路绿城城园东区7-2-802' Address_1 = geocoding.normalizing(text1) Address_2 = geocoding.normalizing(text2) print(geocoding.similarity(Address_1, Address_2)) ``` ``` 0.9473309334313418 ``` ### GeocodingCHN.Geocoding.addRegionEntry 添加自定义地址 `addRegionEntry(Id, parentId, name, RegionType, alias='', replace=True) -> bool` * Id: 地址的ID * parentId: 地址的父ID, 必须存在 * name: 地址的名称 * RegionType: RegionType,地址类型 * alias: 地址的别名, default='' * replace: 是否替换旧地址, default=True ```python from GeocodingCHN import Geocoding geocoding = Geocoding() geocoding.addRegionEntry(1, 321200000000, "A街道", geocoding.RegionType.Street) address_nor = geocoding.normalizing("江苏泰州A街道") print(address_nor) ``` ``` Address( provinceId=320000000000, province=江苏省, cityId=321200000000, city=泰州市, districtId=321200000000, district=泰州市, streetId=1, street=A街道, townId=0, town=, villageId=0, village=, road=, roadNum=, buildingNum=, text= ) ``` ### GeocodingCHN.Geocoding.segment 分词 `segment(text: str, seg_type: str = 'ik') -> list` * text: 输入 * seg_type: 支持 ['ik', 'simple', 'smart', 'word'],default = 'ik' ```python from GeocodingCHN import Geocoding geocoding = Geocoding() text = '山东青岛李沧区延川路绿城城园东区7-2-802' print(geocoding.segment(text)) ``` ``` ['山东', '青岛', '李沧区', '延川路', '绿城', '城', '园', '东区', '7-2-802'] ``` # 感谢 * 感谢[原作者](https://github.com/bitlap/geocoding)的辛苦付出! * 感谢[原作者](https://github.com/bitlap/geocoding)的感谢!