# AUTOMAP **Repository Path**: Heconnor/AUTOMAP ## Basic Information - **Project Name**: AUTOMAP - **Description**: No description available - **Primary Language**: Python - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: reconstruction ## README # AUTOMAP Welcome to the official repository for AUTOMAP (Automated Transform by Manifold Approximation), a Tensorflow (> 2.0) implementation of the model described in: [Article PDF](http://martinos.org/lfi/pdf/AUTOMAP_Nature_2018.pdf): B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature, vol. 555, no. 7697, pp. 487 EP ––492, Mar. 2018 ## Training Training utilizes `automap_main_train.py` and a JSON config file. ``` python automap_main_train.py -c configs/train_64x64_ex.json ``` Some key config file entries: "exp_name": Name of experiment. Intermediate model files will be stored in `experiments/{exp_name}` "resume": Resume training (based on "model_load" file)". 1 or 0 "loadmodel_dir": File location of model to be loaded (for resume = 1). If not resuming a previous training run, it should be set to null. "num_epochs": Number of training epochs "learning_rate": Learning rate "batch_size": Size of training mini-batch. "fc_input_dim": Input dimensionality (# nodes) "fc_hidden_dim": Fully-Connected Hidden layer dimensionality ((# nodes) "fc_output_dim": Fully-Connected Output layer dimensionality (# nodes) "im_h": 128: Output image size (height in pixels) "im_w": 128: Input image size (height in pixels) "data_dir": Directory of Training Data where "train_input" and "train_output" are located. "train_input": Input data file (as .mat file) "train_output": Output data file (as .mat file) ## Inference Inference utilizes `automap_main_inference.py` and a JSON config file. ``` python automap_main_inference.py -c configs/inference_64x64_ex.json ``` The JSON inference config file uses similar entries as the training config file mentioned above, but instead of "train_input" and "train_output" it takes in "inference_input"