# Diffusion-Models-for-Medical-Imaging
**Repository Path**: Heconnor/Diffusion-Models-for-Medical-Imaging
## Basic Information
- **Project Name**: Diffusion-Models-for-Medical-Imaging
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-04-09
- **Last Updated**: 2025-04-09
## Categories & Tags
**Categories**: Uncategorized
**Tags**: tutorial
## README
# Diffusion-Models-for-Medical-Imaging
Diffusion Models for Medical Imaging [**[Diffusion model in projection data (PPT)]**](https://github.com/yqx7150/EDAEPRec/tree/master/Slide)
* Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning
[**[Paper]**](https://onlinelibrary.wiley.com/doi/10.1002/mrm.30105)
* Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data
[**[Paper]**](https://www.sciencedirect.com/science/article/abs/pii/S1746809421001762)
* 基于扩散模型的医学成像研究综述
[**[Paper]**](https://www.cttacn.org.cn/article/doi/10.15953/j.ctta.2024.316)
## Learning from DAE to DSM
* Highly Undersampled Magnetic Resonance Imaging Reconstruction using Autoencoding Priors
[**[Paper]**](https://cardiacmr.hms.harvard.edu/files/cardiacmr/files/liu2019.pdf) [**[Code]**](https://github.com/yqx7150/EDAEPRec) [**[Slide]**](https://github.com/yqx7150/EDAEPRec/tree/master/Slide) [**[数学图像联盟会议交流PPT]**](https://github.com/yqx7150/EDAEPRec/tree/master/Slide)
* High-dimensional Embedding Network Derived Prior for Compressive Sensing MRI Reconstruction
[**[Paper]**](https://www.sciencedirect.com/science/article/abs/pii/S1361841520300815?via%3Dihub) [**[Code]**](https://github.com/yqx7150/EDMSPRec)
* Denoising Auto-encoding Priors in Undecimated Wavelet Domain for MR Image Reconstruction
[**[Paper]**](https://www.sciencedirect.com/science/article/pii/S0925231221000990) [**[Paper]**](https://arxiv.org/ftp/arxiv/papers/1909/1909.01108.pdf) [**[Code]**](https://github.com/yqx7150/WDAEPRec)
* REDAEP: Robust and Enhanced Denoising Autoencoding Prior for Sparse-View CT Reconstruction
[**[Paper]**](https://ieeexplore.ieee.org/document/9076295) [**[Code]**](https://github.com/yqx7150/REDAEP) [**[PPT]**](https://github.com/yqx7150/HGGDP/tree/master/Slide) [**[数学图像联盟会议交流PPT]**](https://github.com/yqx7150/EDAEPRec/tree/master/Slide)
* Accelerated model-based iterative reconstruction strategy for sparse-view photoacoustic tomography aided by multi-channel autoencoder priors
[**[Paper]**](https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300281) [**[Code]**](https://github.com/yqx7150/PAT-MDAE)
* Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model
[**[Paper]**](https://ieeexplore.ieee.org/abstract/document/9703672) [**[Code]**](https://github.com/yqx7150/EASEL) [**[PPT]**](https://github.com/yqx7150/HGGDP/tree/master/Slide)
* Wavelet-improved Score-based Generative Model for Medical Imaging
[**[Paper]**](https://ieeexplore.ieee.org/document/10288274)
* 基于分数匹配生成模型的无透镜成像方法
[**[Paper]**](https://www.opticsjournal.net/Articles/OJf1842c2819a4fa2e/FigureTable) [**[Code]**](https://github.com/yqx7150/LSGM) [**[CIIS 2023-PPT]**](https://github.com/yqx7150/SHGM/tree/main)
* Imaging through scattering media via generative diffusion model
[**[Paper]**](https://pubs.aip.org/aip/apl/article/124/5/051101/3176612/Imaging-through-scattering-media-via-generative) [**[Code]**](https://github.com/yqx7150/ISDM)
* Fluorescence molecular tomography via score-based generative model
[**[Paper]**](https://www.sciencedirect.com/science/article/pii/S0143816625000508) [**[Code]**](https://github.com/yqx7150/FTSG)
## Learning from Image Domain to Projection Domain
* Homotopic Gradients of Generative Density Priors for MR Image Reconstruction
[**[Paper]**](https://ieeexplore.ieee.org/abstract/document/9435335) [**[Code]**](https://github.com/yqx7150/HGGDP) [**[Slide]**](https://github.com/yqx7150/HGGDP/tree/master/Slide)
* Universal Generative Modeling for Calibration-free Parallel MR Imaging
[**[Paper]**](https://biomedicalimaging.org/2022/) [**[Code]**](https://github.com/yqx7150/UGM-PI) [**[Poster]**](https://github.com/yqx7150/UGM-PI/blob/main/paper%20%23160-Poster.pdf)
* WKGM: Weight-K-space Generative Model for Parallel Imaging Reconstruction
[**[Paper]**](https://arxiv.org/abs/2205.03883) [**[Code]**](https://github.com/yqx7150/WKGM) [**[ISMRM_2022_slideliu6]**](https://github.com/yqx7150/WKGM/blob/main/ISMRM_2022_slideliu6.pdf) [**[ISMRM_2022_liu]**](https://submissions.mirasmart.com/ISMRM2022/Itinerary/ConferenceMatrixEventDetail.aspx?ses=WE-04)
* Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging Reconstruction
[**[Paper]**](https://www.sciencedirect.com/science/article/abs/pii/S0730725X23001224) [**[Code]**](https://github.com/yqx7150/LR-KGM)
* Universal Generative Modeling in Dual-domain for Dynamic MR Imaging
[**[Paper]**](https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/nbm.5011) [**[Code]**](https://github.com/yqx7150/DD-UGM)
* Physics-Informed DeepMRI: k-Space Interpolation Meets Heat Diffusion
[**[Paper]**](https://ieeexplore.ieee.org/document/10683732)
* Sub-DM: Subspace Diffusion Model with Orthogonal Decomposition for MRI Reconstruction
[**[Paper]**](https://arxiv.org/pdf/2411.03758)
* Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction
[**[Paper]**](https://ieeexplore.ieee.org/document/10233041) [**[Code]**](https://github.com/yqx7150/GMSD)
* Multi-phase FZA lensless imaging via diffusion model
[**[Paper]**](https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-12-20595&id=531211) [**[Code]**](https://github.com/yqx7150/MLDM) [**[CIIS 2023-PPT]**](https://github.com/yqx7150/SHGM/tree/main)
* Generative model for sparse photoacoustic tomography artifact removal
[**[Paper]**](https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12745/1274503/Generative-model-for-sparse-photoacoustic-tomography-artifact-removal/10.1117/12.2683128.short?SSO=1)
* RED: Residual Estimation Diffusion for Low-Dose PET Sinogram Reconstruction
[**[Paper]**](https://www.sciencedirect.com/science/article/pii/S1361841525001057) [**[Code]**](https://github.com/yqx7150/RED)
* Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration
[**[Paper]**](https://www.sciencedirect.com/science/article/pii/S2213597923001118) [**[Code]**](https://github.com/yqx7150/PAT-Diffusion)
* High-resolution iterative reconstruction at extremely low sampling rate for Fourier single-pixel imaging via diffusion model
[**[Paper]**](https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-3-3138&id=545621) [**[Code]**](https://github.com/yqx7150/FSPI-DM)
## Learning from Large to Small Dataset
* One-shot Generative Prior in Hankel-k-space for Parallel Imaging Reconstruction
[**[Paper]**](https://ieeexplore.ieee.org/document/10158730) [**[Code]**](https://github.com/yqx7150/HKGM) [**[PPT]**](https://github.com/yqx7150/HKGM/tree/main/PPT)
* One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging
[**[Paper]**](https://ieeexplore.ieee.org/abstract/document/10506793) [**[Code]**](https://github.com/yqx7150/OSDM)
* Low-rank Angular Prior Guided Multi-diffusion Model for Few-shot Low-dose CT Reconstruction
[**[Paper]**](https://ieeexplore.ieee.org/abstract/document/10776993) [**[Code]**](https://github.com/yqx7150/PHD)
* Generative Modeling in Structural-Hankel Domain for Color Image Inpainting
[**[Paper]**](http://arxiv.org/abs/2211.13857) [**[Code]**](https://github.com/yqx7150/SHGM) [**[CIIS 2023-PPT]**](https://github.com/yqx7150/SHGM/tree/main)
## Learning from One to Multiple Models
* Stage-by-stage Wavelet Optimization Refinement Diffusion Model for Sparse-view CT Reconstruction
[**[Paper]**](https://ieeexplore.ieee.org/abstract/document/10403850) [**[Code]**](https://github.com/yqx7150/SWORD)
* Dual-Domain Collaborative Diffusion Sampling for Multi-Source Stationary Computed Tomography Reconstruction
[**[Paper]**](https://ieeexplore.ieee.org/document/10577271) [**[Code]**](https://github.com/lizrzr/DCDS-Dual-domain_Collaborative_Diffusion_Sampling)
* Diffusion Model based on Generalized Map for Accelerated MRI
[**[Paper]**](https://doi.org/10.1002/nbm.5232) [**[Code]**](https://github.com/yqx7150/GM-SDE)
* MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction
[**[Paper]**](https://arxiv.org/pdf/2405.05763) [**[Code]**](https://github.com/yqx7150/MSDiff)
* Multiple diffusion models-enhanced extremely limited-view reconstruction strategy for photoacoustic tomography boosted by multi-scale priors
[**[Paper]**](https://www.sciencedirect.com/science/article/pii/S2213597924000636) [**[Code]**](https://github.com/yqx7150/MSDM-PAT)
## Learning from Regular to Irregular Samples
* Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction
[**[Paper]**](https://arxiv.org/abs/2309.00853) [**[Code]**](https://github.com/yqx7150/CM-DM)
* DP-MDM: Detail-Preserving MR Reconstruction via Multiple Diffusion Models
[**[Paper]**](http://arxiv.org/abs/2211.13857) [**[Code]**](https://github.com/yqx7150/DP-MDM)
* MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction
[**[Paper]**](https://arxiv.org/pdf/2405.05763) [**[Code]**](https://github.com/yqx7150/MSDiff)
* Diffusion Transformer Meets Random Masks: An Advanced PET Reconstruction Framework
[**[Paper]**](https://arxiv.org/pdf/2503.08339) [**[Code]**](https://github.com/yqx7150/DREAM)
* Physics-informed DeepCT: Sinogram Wavelet Decomposition Meets Masked Diffusion
[**[Paper]**](https://arxiv.org/abs/2501.09935) [**[Code]**](https://github.com/yqx7150/SWARM)