# Face-Track-Detect-Extract **Repository Path**: Linzai/Face-Track-Detect-Extract ## Basic Information - **Project Name**: Face-Track-Detect-Extract - **Description**: Detect , track and extract the optimal face in multi-target faces (exclude side face and select the optimal face). - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 6 - **Forks**: 2 - **Created**: 2019-11-25 - **Last Updated**: 2021-09-28 ## Categories & Tags **Categories**: cv **Tags**: None ## README # Face Detection & Tracking & Extract ![GitHub](https://img.shields.io/github/license/mashape/apistatus.svg) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/Django.svg) This project can **detect** , **track** and **extract** the **optimal** face in multi-target faces (exclude side face and select the optimal face). ## Introduction * **Dependencies:** * Python 3.5+ * Tensorflow * [**MTCNN**](https://github.com/davidsandberg/facenet/tree/master/src/align) * Scikit-learn * Numpy * Numba * Opencv-python * Filterpy ## Run * To run the python version of the code : ```sh python3 start.py ``` * Then you can find faces extracted stored in the floder **./facepics** . * If you want to draw 5 face landmarks on the face extracted,you just add the argument **face_landmarks** ```sh python3 start.py --face_landmarks ``` ## What can this project do? * You can run it to extract the optimal face for everyone from a lot of videos and use it as a training set for **CNN Training**. * You can also send the extracted face to the backend for **Face Recognition**. ## Results ![alt text](https://raw.githubusercontent.com/wiki/Linzaer/Face-Track-Detect-Extract/pic4.gif "scene 1") ![alt text](https://raw.githubusercontent.com/wiki/Linzaer/Face-Track-Detect-Extract/pic5.jpg "faces extracted") ## Special Thanks to: * [**experimenting-with-sort**](https://github.com/ZidanMusk/experimenting-with-sort) ## License MIT LICENSE