# xrsfm
**Repository Path**: OpenXRLab/xrsfm
## Basic Information
- **Project Name**: xrsfm
- **Description**: OpenXRLab Structure-from-Motion Toolbox and Benchmark
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 2
- **Forks**: 0
- **Created**: 2022-12-18
- **Last Updated**: 2025-09-16
## Categories & Tags
**Categories**: vrar
**Tags**: None
## README
# XRSfM
[](https://github.com/openxrlab/xrsfm/actions)
[](https://github.com/openxrlab/xrsfm/blob/main/LICENSE)
## Introduction
[English](README.md) | [简体中文]
XRSfM 是一个开源的运动恢复结构代码仓库,它是[OpenXRLab](https://openxrlab.org.cn/)项目的一部分.
关于XRSfM更详细的介绍放在[introduction.md](docs/en/introduction.md).
## Citation
如果你的研究过程中使用了该仓库,请考虑引用:
```bibtex
@misc{xrsfm,
title={OpenXRLab Structure-from-Motion Toolbox and Benchmark},
author={XRSfM Contributors},
howpublished = {\url{https://github.com/openxrlab/xrsfm}},
year={2022}
}
```
如果你的研究过程中使用了该仓库中的基于共视的匹配方法,请考虑引用:
```bibtex
@inproceedings{ye2020efficient,
title={Efficient covisibility-based image matching for large-scale sfm},
author={Ye, Zhichao and Zhang, Guofeng and Bao, Hujun},
booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
year={2020}
}
```
```bibtex
@misc{ye2023ecsfm,
title = {EC-SfM: Efficient Covisibility-based Structure-from-Motion for Both Sequential and Unordered Images},
author = {Ye, Zhichao and Bao, Chong and Zhou, Xin and Liu, Haomin and Bao, Hujun and Zhang, Guofeng},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
year={2023},
publisher={IEEE}
}
```
## Getting Started
1.参考[installation.md](docs/zh/installation.md)进行安装编译.
2.下载提供的[测试数据](https://openxrlab-share-mainland.oss-cn-hangzhou.aliyuncs.com/xrsfm/test_data.zip?versionId=CAEQQBiBgMCi_6mllxgiIGI2ZjM1YjE1NjBmNTRmYjc5NzZlMzZkNWY1ZTk1YWFj) 或者按照相同格式准备你自己的数据.
3.运行以下脚本进行重建:
```
python3 ./scripts/run_test_data.py --workspace_path ${workspace_path}$
```
更多细节请查看[tutorial.md](docs/zh/tutorial.md)
## Build ARDemo
除了重建功能, OpenXRLab 项目还提供了定位功能。
你可以构建自己的端云定位ARDemo,更多的信息请查看[ARDemo](http://doc.openxrlab.org.cn/openxrlab_document/ARDemo/ARdemo.html#).
## License
本代码库的许可证是[Apache-2.0](LICENSE)。请注意,本许可证仅适用于我们库中的代码,这些代码的依赖项是独立的,并单独许可。我们十分感谢这些依赖项的贡献者。
本项目所使用依赖项的内容可能会影响我们代码库的许可证,一些依赖方法带有[附加许可证](docs/en/additional_licenses.md)。
## Acknowledgement
XRSfM是一个开源项目,由学术界和行业的研究人员和工程师共同参与。
我们感谢所有实现其方法或添加新功能的贡献者,以及提供宝贵反馈的用户。
## Projects in OpenXRLab
- [XRPrimer](https://github.com/openxrlab/xrprimer): OpenXRLab foundational library for XR-related algorithms.
- [XRSLAM](https://github.com/openxrlab/xrslam): OpenXRLab Visual-inertial SLAM Toolbox and Benchmark.
- [XRSfM](https://github.com/openxrlab/xrsfm): OpenXRLab Structure-from-Motion Toolbox and Benchmark.
- [XRLocalization](https://github.com/openxrlab/xrlocalization): OpenXRLab Visual Localization Toolbox and Server.
- [XRMoCap](https://github.com/openxrlab/xrmocap): OpenXRLab Multi-view Motion Capture Toolbox and Benchmark.
- [XRMoGen](https://github.com/openxrlab/xrmogen): OpenXRLab Human Motion Generation Toolbox and Benchmark.
- [XRNeRF](https://github.com/openxrlab/xrnerf): OpenXRLab Neural Radiance Field (NeRF) Toolbox and Benchmark.