# CoTr **Repository Path**: RitchieAlpha/CoTr ## Basic Information - **Project Name**: CoTr - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-03 - **Last Updated**: 2022-04-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr:
**Paper: [CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer](https://arxiv.org/pdf/2103.03024.pdf ).** ## Requirements CUDA 11.0
Python 3.7
Pytorch 1.7
Torchvision 0.8.2
## Usage ### 0. Installation * Install Pytorch1.7, nnUNet and CoTr as below ``` pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html cd nnUNet pip install -e . cd CoTr_package pip install -e . ``` ### 1. Data Preparation * Download [BCV dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/217789) * Preprocess the BCV dataset according to the uploaded nnUNet package. * Training and Testing ID are in `data/splits_final.pkl`. ### 2. Training cd CoTr_package/CoTr/run * Run `nohup python run_training.py -gpu='0' -outpath='CoTr' 2>&1 &` for training. ### 3. Testing * Run `nohup python run_training.py -gpu='0' -outpath='CoTr' -val --val_folder='validation_output' 2>&1 &` for validation. ### 4. Citation If this code is helpful for your study, please cite: ``` @article{xie2021cotr, title={CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation}, author={Xie, Yutong and Zhang, Jianpeng and Shen, Chunhua and Xia, Yong}, booktitle={MICCAI}, year={2021} } ``` ### 5. Acknowledgements Part of codes are reused from the [nnU-Net](https://github.com/MIC-DKFZ/nnUNet). Thanks to Fabian Isensee for the codes of nnU-Net. ### Contact Yutong Xie (xuyongxie@mail.nwpu.edu.cn)