# oasis **Repository Path**: Unity-Technologies/oasis ## Basic Information - **Project Name**: oasis - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-05 - **Last Updated**: 2024-11-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Oasis 500M ![](./media/arch.png) ![](./media/thumb.png) Oasis is an interactive world model developed by [Decart](https://www.decart.ai/) and [Etched](https://www.etched.com/). Based on diffusion transformers, Oasis takes in user keyboard input and generates gameplay in an autoregressive manner. We release the weights for Oasis 500M, a downscaled version of the model, along with inference code for action-conditional frame generation. For more details, see our [joint blog post](https://oasis-model.github.io/) to learn more. And to use the most powerful version of the model, be sure to check out the [live demo](https://oasis.us.decart.ai/) as well! ## Setup ``` git clone https://github.com/etched-ai/open-oasis.git cd open-oasis # Install pytorch pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121 # Install other dependencies pip install einops diffusers timm av ``` ## Download the model weights Inside the `open-oasis/` directory, run: ``` huggingface-cli login huggingface-cli download Etched/oasis-500m oasis500m.safetensors # DiT checkpoint huggingface-cli download Etched/oasis-500m vit-l-20.safetensors # ViT VAE checkpoint ``` ## Basic Usage We include a basic inference script that loads a prompt frame from a video and generates additional frames conditioned on actions. ``` python generate.py ``` The resulting video will be saved to `video.mp4`. Here's are some examples of a generation from this 500M model! ![](media/sample_0.gif) ![](media/sample_1.gif) > Hint: try swapping out the `.mp4` input file in the script to try different environments!