# TrackNetV2-pytorch **Repository Path**: WONE123/TrackNetV2-pytorch ## Basic Information - **Project Name**: TrackNetV2-pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: all - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-05 - **Last Updated**: 2025-07-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TrackNetV2-pytorch Paper: **TrackNetV2: Efficient Shuttlecock Tracking Network** Original Project(tensorflow): https://nol.cs.nctu.edu.tw:234/open-source/TrackNetv2 > 官方上传的标注工具、数据集均已失效。del> > > The author has now reuploaded the dataset。 Paper reading:[TrackNetV2论文记录与pytorch复现](https://zhuanlan.zhihu.com/p/624900770) ## Inference with pytorch weights converted from tensorflow weights: ```shell git apply tf2torch/diff.txt python detect.py --source xxx.mp4 --weights ./tf2torch/track.pt --view-img # TrackNetv2/3_in_3_out/model906_30 ``` ## Inference: ``` python detect.py --source xxx.mp4 --weights xxx.pt --view-img ``` ## Training: ``` # training from scratch python train.py --data data/match.yaml # training from pretrain weight python train.py --weights xxx.pt --data data/match.yaml # resume training python train.py --data data/match.yaml --resume ``` ## Evaluation: ```shell python val.py --weights xxx.pt --data data/match.yaml ``` ## Deployment: ```shell # Server python deploy/app.py --weights xxx.pt # Client python deploy/test_app.py ``` ## Dataset Preparation: ``` # TrackNetV2 dataset # /home/chg/Badminton/TrackNetV2 # - Amateur # - Professional # - Test python tools/handle_tracknet_dataset.py /home/chg/Badminton/TrackNetV2/Amateur python tools/handle_tracknet_dataset.py /home/chg/Badminton/TrackNetV2/Professional python tools/handle_tracknet_dataset.py /home/chg/Badminton/TrackNetV2/Test python tools/Frame_Generator_rally.py /home/chg/Badminton/TrackNetV2/Amateur python tools/Frame_Generator_rally.py /home/chg/Badminton/TrackNetV2/Professional python tools/Frame_Generator_rally.py /home/chg/Badminton/TrackNetV2/Test # TrackNetV2 dataset config : data/match.yaml path: /home/chg/Documents/Badminton/TrackNetV2 train: - Amateur - Professional val: - Test # also you can use follow config for testing train: - Test/match1/images/1_05_02 val: - Test/match2/images/1_03_03 # or train: - Test/match1 val: - Test/match2 ``` ## Reference: https://github.com/mareksubocz/TrackNet https://nol.cs.nctu.edu.tw:234/open-source/TrackNetv2 https://github.com/ultralytics/yolov5