# CBAM.PyTorch **Repository Path**: ZR__2020/CBAM.PyTorch ## Basic Information - **Project Name**: CBAM.PyTorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-12-03 - **Last Updated**: 2021-12-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CBAM.PyTorch Non-official implement of Paper:CBAM: Convolutional Block Attention Module ## Introduction The codes are [PyTorch](https://pytorch.org/) re-implement version for paper: CBAM: Convolutional Block Attention Module > Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[J]. 2018. [ECCV2018](http://openaccess.thecvf.com/content_ECCV_2018/papers/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.pdf) ## Structure The overview of CBAM. The module has two sequential sub-modules: channel and spatial. The intermediate feature map is adaptively refined through our module (CBAM) at every convolutional block of deep networks. ![1](imgs/01.png) ## Requirements - Python3 - PyTorch 0.4.1 - tensorboardX (optional) - torchnet - pretrainedmodels (optional) ## Results We just test four models in ImageNet-1K, both train set and val set are scaled to 256(minimal side), only use **Mirror** and **RandomResizeCrop** as training data augmentation, during validation, we use center crop to get 224x224 patch. ### ImageNet-1K Models | validation(Top-1) | validation(Top-5) | ------------- | ----------------- | ----------------- | ResNet50 | 74.26 | 91.91 | ResNet50-CBAM | 75.45 | 92.55 |