# GLUE **Repository Path**: all_create_code/GLUE ## Basic Information - **Project Name**: GLUE - **Description**: GLUE,单细胞多组学数据整合软件 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-07-20 - **Last Updated**: 2022-08-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GLUE (Graph-Linked Unified Embedding) [![license-badge](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![pypi-badge](https://img.shields.io/pypi/v/scglue)](https://pypi.org/project/scglue) [![conda-badge](https://anaconda.org/bioconda/scglue/badges/version.svg)](https://anaconda.org/bioconda/scglue) [![docs-badge](https://readthedocs.org/projects/scglue/badge/?version=latest)](https://scglue.readthedocs.io/en/latest/?badge=latest) [![build-badge](https://github.com/gao-lab/GLUE/actions/workflows/build.yml/badge.svg)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml) [![coverage-badge](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/Jeff1995/e704b2f886ff6a37477311b90fdf7efa/raw/coverage.json)](https://github.com/gao-lab/GLUE/actions/workflows/build.yml) Graph-linked unified embedding for single-cell multi-omics data integration ![Model architecture](docs/_static/architecture.svg) For more details, please check out our [publication](https://doi.org/10.1038/s41587-022-01284-4). ## Directory structure ``` . ├── scglue # Main Python package ├── data # Data files ├── evaluation # Method evaluation pipelines ├── experiments # Experiments and case studies ├── tests # Unit tests for the Python package ├── docs # Documentation files ├── custom # Customized third-party packages ├── packrat # Reproducible R environment via packrat ├── env.yaml # Reproducible Python environment via conda ├── pyproject.toml # Python package metadata ├── LICENSE └── README.md ``` ## Installation The `scglue` package can be installed via conda using one of the following commands: ```sh conda install -c conda-forge -c bioconda scglue # CPU only conda install -c conda-forge -c bioconda scglue pytorch-gpu # With GPU support ``` Or, it can also be installed via pip: ```sh pip install scglue ``` > Installing within a > [conda environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) > is recommended. ## Usage Please checkout the documentations and tutorials at [scglue.readthedocs.io](https://scglue.readthedocs.io). ## Development Install scglue in editable form via flit (first install flit via conda or pip if not installed already): ```sh flit install -s ``` Run unit tests: ```sh pytest --cov="scglue" --cov-report="term-missing" tests [--cpu-only] ``` Build documentation: ```sh sphinx-build -a -b html docs docs/_build ``` ## Reproduce results 1. Checkout the repository to v0.2.0: ```sh git checkout tags/v0.2.0 ``` 2. Create a local conda environment using the `env.yaml` file, and then install scglue: ```sh conda env create -p conda -f env.yaml && conda activate ./conda flit install -s ``` 3. Set up a project-specific R environment: ```R packrat::restore() # Packrat should be automatically installed if not available. install.packages("data/download/Saunders-2018/DropSeq.util_2.0.tar.gz", repos = NULL) install.packages("custom/Seurat_4.0.2.tar.gz", lib = "packrat/custom", repos = NULL) ``` > R 4.0.2 was used during the project, but any version above 4.0.0 should be compatible. 4. Follow instructions in `data` to prepare the necessary data. 5. Follow instructions in `evaluation` for method evaluation. 6. Follow instructions in `experiments` for case studies.