# AlphaPose **Repository Path**: allenzhaoxin/AlphaPose ## Basic Information - **Project Name**: AlphaPose - **Description**: 来自github的姿态识别项目 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 4 - **Created**: 2020-09-14 - **Last Updated**: 2024-06-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
## AlphaPose [Alpha Pose](http://www.mvig.org/research/alphapose.html) is an accurate multi-person pose estimator, which is the **first real-time** open-source system that achieves **70+ mAP (72.3 mAP)** on COCO dataset and **80+ mAP (82.1 mAP)** on MPII dataset.** To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the **first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset.** ## News! Now [**PyTorch** version](https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch) of AlphaPose is released! It runs at **20 fps** on COCO validation set (4.6 people per image on average) and achieves 71 mAP! ## Contents 1. [AlphaPose](#alphapose) 2. [Results](#results) 3. [Installation](#installation) 4. [Quick Start](#quick-start) 5. [Output](#output) 6. [Speeding Up Alpha Pose](#speeding-up-alpha-pose) 7. [Feedbacks](#feedbacks) 8. [Contributors](#contributors) 9. [Citation](#citation) 10. [License](#license) ## Results ### Pose Estimation

Results on COCO test-dev 2015:
| Method | AP @0.5:0.95 | AP @0.5 | AP @0.75 | AP medium | AP large | |:-------|:-----:|:-------:|:-------:|:-------:|:-------:| | OpenPose (CMU-Pose) | 61.8 | 84.9 | 67.5 | 57.1 | 68.2 | | Detectron (Mask R-CNN) | 67.0 | 88.0 | 73.1 | 62.2 | 75.6 | | **AlphaPose** | **72.3** | **89.2** | **79.1** | **69.0** | **78.6** |
Results on MPII full test set:
| Method | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Ave | |:-------|:-----:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:| | OpenPose (CMU-Pose) | 91.2 | 87.6 | 77.7 | 66.8 | 75.4 | 68.9 | 61.7 | 75.6 | | Newell & Deng | **92.1** | 89.3 | 78.9 | 69.8 | 76.2 | 71.6 | 64.7 | 77.5 | | **AlphaPose** | 91.3 | **90.5** | **84.0** | **76.4** | **80.3** | **79.9** | **72.4** | **82.1** |
### Pose Tracking

Results on PoseTrack Challenge validation set: 1. Task2: Multi-Person Pose Estimation (mAP)
| Method | Head mAP | Shoulder mAP | Elbow mAP | Wrist mAP | Hip mAP | Knee mAP | Ankle mAP | Total mAP | |:-------|:-----:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:| | Detect-and-Track(FAIR) | **67.5** | 70.2 | 62 | 51.7 | 60.7 | 58.7 | 49.8 | 60.6 | | **AlphaPose+PoseFlow** | 66.7 | **73.3** | **68.3** | **61.1** | **67.5** | **67.0** | **61.3** | **66.5** |
2. Task3: Pose Tracking (MOTA)
| Method | Head MOTA | Shoulder MOTA | Elbow MOTA | Wrist MOTA | Hip MOTA | Knee MOTA | Ankle MOTA | Total MOTA | Total MOTP| |:-------|:-----:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:| | Detect-and-Track(FAIR) | **61.7** | 65.5 | 57.3 | 45.7 | 54.3 | 53.1 | 45.7 | 55.2 | 61.5 | | **AlphaPose+PoseFlow** | 59.8 | **67.0** | **59.8** | **51.6** | **60.0** | **58.4** | **50.5** | **58.3** | **67.8**|
*Note: Please read [PoseFlow/README.md](PoseFlow/) for details.* ## Installation 1. Get the code and build related modules. ```Shell git clone https://github.com/MVIG-SJTU/AlphaPose.git cd AlphaPose/human-detection/lib/ make clean make cd newnms/ make cd ../../../ ``` 2. Install [Torch](https://github.com/torch/distro) and [TensorFlow](https://www.tensorflow.org/install/)(verson >= 1.2). After that, install related dependencies by: ```Shell chmod +x install.sh ./install.sh ``` 3. Run fetch_models.sh to download our pre-trained models. Or download the models manually: output.zip([Google drive](https://drive.google.com/open?id=1dMiUPMvt5o-S1BjDkzUJooEoT3GgasxB)|[Baidu pan](https://pan.baidu.com/s/1hund0US)), final_model.t7([Google drive](https://drive.google.com/open?id=1JYlLspGJHJFIggkDll4MdUdqX2ELqHpk)|[Baidu pan](https://pan.baidu.com/s/1qZuEyF6)) ```Shell chmod +x fetch_models.sh ./fetch_models.sh ``` ## Quick Start - **Demo**: Run AlphaPose for all images in a folder and visualize the results with: ``` ./run.sh --indir examples/demo/ --outdir examples/results/ --vis ``` The visualized results will be stored in examples/results/RENDER. To easily process images/video and display/save the results, please see [doc/run.md](doc/run.md). **If you get any problems, you can check the [doc/faq.md](doc/faq.md).** - **Video**: You can see our video demo [here](https://www.youtube.com/watch?v=Z2WPd59pRi8). ## Output Output (format, keypoint index ordering, etc.) in [doc/output.md](doc/output.md). ## Speeding Up AlphaPose We provide a `fast` mode for human-detection that disables multi-scale testing. You can turn it on by adding `--mode fast`. And if you have multiple gpus on your machine or have large gpu memories, you can speed up the pose estimation step by using multi-gpu testing or large batch tesing with: ``` ./run.sh --indir examples/demo/ --outdir examples/results/ --gpu 0,1,2,3 --batch 5 ``` It assumes that you have 4 gpu cards on your machine and *each card* can run a batch of 5 images. Here is the recommended batch size for gpu with different size of memory: ``` GPU memory: 4GB -- batch size: 3 GPU memory: 8GB -- batch size: 6 GPU memory: 12GB -- batch size: 9 ``` See [doc/run.md](doc/run.md) for more details. ## Feedbacks If you get any problems, you can check the [doc/faq.md](doc/faq.md) first. If it can not solve your problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request! ## Contributors AlphaPose is based on RMPE(ICCV'17), authored by [Hao-shu Fang](https://fang-haoshu.github.io/), Shuqin Xie, [Yu-Wing Tai](https://scholar.google.com/citations?user=nFhLmFkAAAAJ&hl=en) and [Cewu Lu](http://www.mvig.org/), [Cewu Lu](http://mvig.sjtu.edu.cn/) is the corresponding author. Currently, it is developed and maintained by [Hao-shu Fang](https://fang-haoshu.github.io/), [Jiefeng Li](http://jeff-leaf.site/), [Yuliang Xiu](http://xiuyuliang.cn/about/) and [Ruiheng Chang](https://crh19970307.github.io/). The main contributors are listed in [doc/contributors.md](doc/contributors.md). ## Citation Please cite these papers in your publications if it helps your research: @inproceedings{fang2017rmpe, title={{RMPE}: Regional Multi-person Pose Estimation}, author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu}, booktitle={ICCV}, year={2017} } @ARTICLE{2018arXiv180200977X, author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu}, title = {{Pose Flow}: Efficient Online Pose Tracking}, journal = {ArXiv e-prints}, eprint = {1802.00977}, year = {2018} } ## License AlphaPose is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, contact [Cewu Lu](http://www.mvig.org/)