# myrtdetr **Repository Path**: andrepan/myrtdetr ## Basic Information - **Project Name**: myrtdetr - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-12 - **Last Updated**: 2025-06-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 简体中文 | [English](README.md) # RT-DETR 文章"[DETRs Beat YOLOs on Real-time Object Detection](https://arxiv.org/abs/2304.08069)"和"[RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer](https://arxiv.org/abs/2407.17140)"的官方实现.
Fig
## 最新动态 - 发布RT-DETRv2系列模型 - 发布RT-DETR-R50, RT-DETR-R101模型 - 发布RT-DETR-R50-m模型(scale模型的范例) - 发布RT-DETR-R34, RT-DETR-R18模型 - 发布RT-DETR-L, RT-DETR-X模型 ## 代码仓库 - 🔥 RT-DETRv2 - paddle: [code&weight](./rtdetrv2_paddle/) - pytorch: [code&weight](./rtdetrv2_pytorch/) - 🔥 RT-DETR - paddle: [code&weight](./rtdetr_paddle) - pytorch: [code&weight](./rtdetr_pytorch) ## 简介 RT-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的初始化。此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-R50在COCO val2017上实现了53.1%的AP,在T4 GPU上实现了108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。使用Objects365预训练之后, RT-DETR-R50 和 RT-DETR-R101 分别实现了 55.3% 和 56.2% AP的精度. 若要了解更多细节,请参考我们的论文[paper](https://arxiv.org/abs/2304.08069).
## 引用RT-DETR 如果需要在你的研究中使用RT-DETR,请通过以下方式引用我们的论文: ``` @misc{lv2023detrs, title={DETRs Beat YOLOs on Real-time Object Detection}, author={Yian Zhao and Wenyu Lv and Shangliang Xu and Jinman Wei and Guanzhong Wang and Qingqing Dang and Yi Liu and Jie Chen}, year={2023}, eprint={2304.08069}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{lv2024rtdetrv2improvedbaselinebagoffreebies, title={RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer}, author={Wenyu Lv and Yian Zhao and Qinyao Chang and Kui Huang and Guanzhong Wang and Yi Liu}, year={2024}, eprint={2407.17140}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2407.17140}, } ```