# myrtdetr
**Repository Path**: andrepan/myrtdetr
## Basic Information
- **Project Name**: myrtdetr
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-06-12
- **Last Updated**: 2025-06-21
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
简体中文 | [English](README.md)
# RT-DETR
文章"[DETRs Beat YOLOs on Real-time Object Detection](https://arxiv.org/abs/2304.08069)"和"[RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer](https://arxiv.org/abs/2407.17140)"的官方实现.
Fig
## 最新动态
- 发布RT-DETRv2系列模型
- 发布RT-DETR-R50, RT-DETR-R101模型
- 发布RT-DETR-R50-m模型(scale模型的范例)
- 发布RT-DETR-R34, RT-DETR-R18模型
- 发布RT-DETR-L, RT-DETR-X模型
## 代码仓库
- 🔥 RT-DETRv2
- paddle: [code&weight](./rtdetrv2_paddle/)
- pytorch: [code&weight](./rtdetrv2_pytorch/)
- 🔥 RT-DETR
- paddle: [code&weight](./rtdetr_paddle)
- pytorch: [code&weight](./rtdetr_pytorch)
## 简介
RT-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的初始化。此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-R50在COCO val2017上实现了53.1%的AP,在T4 GPU上实现了108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。使用Objects365预训练之后, RT-DETR-R50 和 RT-DETR-R101 分别实现了 55.3% 和 56.2% AP的精度.
若要了解更多细节,请参考我们的论文[paper](https://arxiv.org/abs/2304.08069).
## 引用RT-DETR
如果需要在你的研究中使用RT-DETR,请通过以下方式引用我们的论文:
```
@misc{lv2023detrs,
title={DETRs Beat YOLOs on Real-time Object Detection},
author={Yian Zhao and Wenyu Lv and Shangliang Xu and Jinman Wei and Guanzhong Wang and Qingqing Dang and Yi Liu and Jie Chen},
year={2023},
eprint={2304.08069},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{lv2024rtdetrv2improvedbaselinebagoffreebies,
title={RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer},
author={Wenyu Lv and Yian Zhao and Qinyao Chang and Kui Huang and Guanzhong Wang and Yi Liu},
year={2024},
eprint={2407.17140},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.17140},
}
```