登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
Gitee 2025年度开源项目评选启动,快来选出你心中的最佳开源项目!
代码拉取完成,页面将自动刷新
仓库状态说明
开源项目
>
人工智能
>
机器学习/深度学习
&&
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
88
Star
652
Fork
1.5K
Ascend
/
pytorch
暂停
代码
Issues
41
Pull Requests
350
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
使用 ForkingPickler 在 NPU 序列化 tensor 报错
TODO
#ICVK5R
缺陷
ouyangfeng1
创建于
2025-08-30 15:14
一、问题现象(附报错日志上下文): 使用 ForkingPickler 在 NPU 序列化 tensor 报错 ``` import io import pybase64 import torch from multiprocessing.reduction import ForkingPickler class MultiprocessingSerializer: @staticmethod def serialize(tensor: torch.Tensor, output_str: bool = False): buf = io.BytesIO() # Prefer GPU/NPU if available, else use CPU if torch.cuda.is_available() and tensor.device.type == "cuda": ForkingPickler(buf).dump(tensor) elif torch.npu.is_available() and tensor.device.type == "npu": ForkingPickler(buf).dump(tensor) else: # Fallback to CPU tensor ForkingPickler(buf).dump(tensor.detach().cpu()) buf.seek(0) output = buf.read() if output_str: output = pybase64.b64encode(output).decode("utf-8") return output @staticmethod def deserialize(data, device: str = None): if isinstance(data, str): data = pybase64.b64decode(data, validate=True) buf = io.BytesIO(data) tensor = ForkingPickler(buf).load() if device is not None: tensor = tensor.to(device) return tensor if __name__ == "__main__": if torch.cuda.is_available(): device = "cuda" elif torch.npu.is_available(): device = "npu" else: device = "cpu" x = torch.randn(2, 3, device=device) print("Original:", x, x.device) serialized = MultiprocessingSerializer.serialize(x) recovered = MultiprocessingSerializer.deserialize(serialized, device=device) print("Recovered:", recovered, recovered.device) ``` 尝试使用 ForkingPickler 序列化 tensor 在 NPU 上传输,出现如下问题: ``` Traceback (most recent call last): File "/pathto/pickler_test.py", line 54, in <module> serialized = MultiprocessingSerializer.serialize(x) File "/pathto/pickler_test.py", line 16, in serialize ForkingPickler(buf).dump(tensor) File "/pathto/miniconda3/envs/roll/lib/python3.10/site-packages/torch/multiprocessing/reductions.py", line 618, in reduce_storage fd, size = storage._share_fd_cpu_() File "/pathto/miniconda3/envs/roll/lib/python3.10/site-packages/torch/storage.py", line 437, in wrapper return fn(self, *args, **kwargs) File "/pathto/miniconda3/envs/roll/lib/python3.10/site-packages/torch/storage.py", line 512, in _share_fd_cpu_ return super()._share_fd_cpu_(*args, **kwargs) RuntimeError: _share_fd_: only available on CPU ``` 与https://gitee.com/ascend/pytorch/issues/IBLJAA?from=project-issue&search_text=_share_fd_ 问题基本一致 请问除了放在 CPU 上传输,是否有其他解决方案
一、问题现象(附报错日志上下文): 使用 ForkingPickler 在 NPU 序列化 tensor 报错 ``` import io import pybase64 import torch from multiprocessing.reduction import ForkingPickler class MultiprocessingSerializer: @staticmethod def serialize(tensor: torch.Tensor, output_str: bool = False): buf = io.BytesIO() # Prefer GPU/NPU if available, else use CPU if torch.cuda.is_available() and tensor.device.type == "cuda": ForkingPickler(buf).dump(tensor) elif torch.npu.is_available() and tensor.device.type == "npu": ForkingPickler(buf).dump(tensor) else: # Fallback to CPU tensor ForkingPickler(buf).dump(tensor.detach().cpu()) buf.seek(0) output = buf.read() if output_str: output = pybase64.b64encode(output).decode("utf-8") return output @staticmethod def deserialize(data, device: str = None): if isinstance(data, str): data = pybase64.b64decode(data, validate=True) buf = io.BytesIO(data) tensor = ForkingPickler(buf).load() if device is not None: tensor = tensor.to(device) return tensor if __name__ == "__main__": if torch.cuda.is_available(): device = "cuda" elif torch.npu.is_available(): device = "npu" else: device = "cpu" x = torch.randn(2, 3, device=device) print("Original:", x, x.device) serialized = MultiprocessingSerializer.serialize(x) recovered = MultiprocessingSerializer.deserialize(serialized, device=device) print("Recovered:", recovered, recovered.device) ``` 尝试使用 ForkingPickler 序列化 tensor 在 NPU 上传输,出现如下问题: ``` Traceback (most recent call last): File "/pathto/pickler_test.py", line 54, in <module> serialized = MultiprocessingSerializer.serialize(x) File "/pathto/pickler_test.py", line 16, in serialize ForkingPickler(buf).dump(tensor) File "/pathto/miniconda3/envs/roll/lib/python3.10/site-packages/torch/multiprocessing/reductions.py", line 618, in reduce_storage fd, size = storage._share_fd_cpu_() File "/pathto/miniconda3/envs/roll/lib/python3.10/site-packages/torch/storage.py", line 437, in wrapper return fn(self, *args, **kwargs) File "/pathto/miniconda3/envs/roll/lib/python3.10/site-packages/torch/storage.py", line 512, in _share_fd_cpu_ return super()._share_fd_cpu_(*args, **kwargs) RuntimeError: _share_fd_: only available on CPU ``` 与https://gitee.com/ascend/pytorch/issues/IBLJAA?from=project-issue&search_text=_share_fd_ 问题基本一致 请问除了放在 CPU 上传输,是否有其他解决方案
评论 (
1
)
登录
后才可以发表评论
状态
TODO
TODO
WIP
DONE
CLOSED
REJECTED
负责人
未设置
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
分支 (79)
标签 (186)
master
v2.8.0
v2.1.0
v2.6.0
v2.7.1
v2.5.1
v2.6.0-7.1.0
v2.5.1-7.1.0
v2.1.0-7.1.0
revert-merge-23967-master
revert-merge-23966-v2.8.0
revert-merge-23965-v2.7.1
revert-merge-23964-v2.6.0
revert-merge-23962-v2.5.1
revert-merge-23789-v2.1.0
v2.1.0-7.0.0
v2.4.0-7.0.0
v2.4.0
v2.3.1
v2.3.1-7.0.0
v2.5.1-7.0.0
v2.4.0-6.0.0
v2.3.1-6.0.0
v2.1.0-6.0.0
v2.1.0-6.0.rc3
v2.3.1-6.0.rc3
v2.4.0-6.0.rc3
v2.2.0
v1.11.0-6.0.rc1
v2.1.0-6.0.rc1
v2.2.0-6.0.rc1
v1.11.0-6.0.rc2
v2.1.0-6.0.rc2
v2.2.0-6.0.rc2
v2.3.1-6.0.rc2
v1.11.0
v2.1.0-5.0.0
v2.0.1-5.0.0
v1.11.0-5.0.0
v2.0.1
v2.1.0-5.0.rc3
v1.11.0-5.0.rc3
v2.0.1-5.0.rc3
v1.11.0-5.0.rc3.3
v1.8.1
v1.11.0-x1
v1.8.1-5.0.rc3
v1.11.0-5.0.rc2.2
v1.11.0-zj
v1.11.0-5.0.rc2.1
v2.0.1-5.0.rc2
v1.11.0-5.0.rc2
v1.8.1-5.0.rc2
v2.0.0-5.0.rc2
v1.8.1-5.0.rc1
v1.11.0-5.0.rc1
v1.11.0-yd
v1.11.0-xf
v1.11.0-infer
v1.11.0-bigkernel
v1.11.0-host_api
v1.8.1-3.0.0
v1.11.0-5.0.rc2.t100
v1.8.1-5.0.rc2.t100
v1.8.1-3.0.0-dev
v1.11.0-3.0.0
v2.0-dev
v1.8.1-3.0.rc3
v1.5.0-3.0.0
v1.5.0
v1.8.1-3.0.rc1
v1.11.0-3.0.rc3
v1.8.1-3.0.rc2
v1.5.0-3.0.rc3
v1.5.0-3.0.rc2
2.0.4.tr5
v1.5.0-3.0.rc1
2.0.2.tr5
2.0.3.tr5
v7.2.RC1.alpha002-pytorch2.8.0
v7.2.RC1.alpha002-pytorch2.7.1
v7.2.RC1.alpha002-pytorch2.6.0
v7.2.RC1.alpha002-pytorch2.1.0
v7.1.0.2-pytorch2.5.1
v7.1.0.2-pytorch2.6.0
v7.1.0.2-pytorch2.1.0
v7.0.0.1-pytorch2.4.0
v7.0.0.1-pytorch2.1.0
v7.2.RC1.alpha001-pytorch2.8.0
v7.2.RC1.alpha001-pytorch2.7.1
v7.2.RC1.alpha001-pytorch2.6.0
v7.2.RC1.alpha001-pytorch2.5.1
v7.2.RC1.alpha001-pytorch2.1.0
v7.1.0.1-pytorch2.6.0
v7.1.0.1-pytorch2.5.1
v7.1.0.1-pytorch2.1.0
v7.1.0-pytorch2.6.0
v7.1.0-pytorch2.5.1
v7.1.0-pytorch2.1.0
v7.1.RC1.alpha003-pytorch2.6.0
v7.1.RC1.alpha003-pytorch2.5.1
v7.1.RC1.alpha003-pytorch2.1.0
v7.1.RC1.alpha002-pytorch2.7.1
v7.1.RC1.alpha002-pytorch2.6.0
v7.1.RC1.alpha002-pytorch2.5.1
v7.1.RC1.alpha002-pytorch2.4.0
v7.1.RC1.alpha002-pytorch2.3.1
v7.1.RC1.alpha002-pytorch2.1.0
v6.0.0.1-pytorch2.4.0
v6.0.0.1-pytorch2.3.1
v6.0.0.1-pytorch2.1.0
v7.1.RC1.alpha001-pytorch2.6.0
v7.1.RC1.alpha001-pytorch2.5.1
v7.1.RC1.alpha001-pytorch2.4.0
v7.1.RC1.alpha001-pytorch2.3.1
v7.1.RC1.alpha001-pytorch2.1.0
v7.0.0-pytorch2.5.1
v7.0.0-pytorch2.4.0
v7.0.0-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.6.0
v7.0.0-pytorch2.1.0
v7.0.RC1.alpha002-pytorch2.5.1
v7.0.RC1.alpha002-pytorch2.4.0
v7.0.RC1.alpha002-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.5.1
v7.0.RC1.alpha001-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.4.0
v7.0.RC1.alpha001-pytorch2.3.1
v6.0.0-pytorch2.4.0
v6.0.0-pytorch2.3.1
v6.0.0-pytorch2.1.0
v6.0.0.alpha003-pytorch2.4.0
v6.0.0.alpha003-pytorch2.3.1
v6.0.0.alpha003-pytorch2.1.0
v6.0.0.alpha002-pytorch2.4.0
v6.0.0.alpha002-pytorch2.3.1
v6.0.0.alpha002-pytorch2.1.0
v6.0.0.alpha001-pytorch2.5.1
v6.0.rc3-pytorch2.4.0
v6.0.rc3-pytorch2.3.1
v6.0.rc3-pytorch2.1.0
v6.0.0.alpha001-pytorch2.4.0
v6.0.0.alpha001-pytorch2.3.1
v6.0.0.alpha001-pytorch2.1.0
v6.0.rc2.1-pytorch1.11.0
v6.0.rc2.1-pytorch2.3.1
v6.0.rc2.1-pytorch2.2.0
v6.0.rc2.1-pytorch2.1.0
v6.0.rc3.alpha003-pytorch2.3.1
v6.0.rc3.alpha003-pytorch2.1.0
v6.0.rc3.alpha001-pytorch2.4.0
v6.0.rc3.alpha002-pytorch2.3.1
v6.0.rc3.alpha002-pytorch2.2.0
v6.0.rc3.alpha002-pytorch2.1.0
v6.0.rc3.alpha002-pytorch1.11.0
v6.0.rc2-pytorch2.1.0
v6.0.rc2-pytorch2.3.1
v6.0.rc2-pytorch2.2.0
v6.0.rc2-pytorch1.11.0
v6.0.rc3.alpha001-pytorch2.3.1
v6.0.rc3.alpha001-pytorch2.2.0
v6.0.rc3.alpha001-pytorch2.1.0
v6.0.rc3.alpha001-pytorch1.11.0
v6.0.rc2.alpha002-pytorch2.3.1
v6.0.rc2.alpha003-pytorch1.11.0
v6.0.rc2.alpha003-pytorch2.2.0
v6.0.rc2.alpha003-pytorch2.1.0
v6.0.rc1.1-pytorch2.2.0
v6.0.rc1.1-pytorch2.1.0
v6.0.rc1.1-pytorch1.11.0
v5.0.1.2-pytorch1.11.0
v5.0.1.2-pytorch2.1.0
v5.0.1.2-pytorch2.0.1
v6.0.rc2.alpha002-pytorch2.2.0
v6.0.rc2.alpha002-pytorch2.1.0
v6.0.rc2.alpha002-pytorch1.11.0
v6.0.rc1-pytorch2.2.0
v6.0.rc1-pytorch2.1.0
v6.0.rc1-pytorch1.11.0
v6.0.rc2.alpha001-pytorch2.2.0
v6.0.rc2.alpha001-pytorch2.1.0
v6.0.rc2.alpha001-pytorch1.11.0
v6.0.rc1.alpha003-pytorch2.0.1
v6.0.rc1.alpha003-pytorch2.1.0
v5.0.1.1-pytorch2.0.1
v5.0.1.1-pytorch1.11.0
v5.0.1.1-pytorch2.1.0
v6.0.rc1.alpha003-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.1.0
v6.0.rc1.alpha002-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.0.1
v6.0.rc1.alpha001-pytorch2.2.0
v5.0.1-pytorch2.1.0
v5.0.1-pytorch2.0.1
v5.0.1-pytorch1.11.0
v6.0.RC1.alpha001-pytorch2.0.1
v6.0.RC1.alpha001-pytorch2.1.0
v6.0.RC1.alpha001-pytorch1.11.0
v5.0.0-pytorch2.1.0
v5.0.0-pytorch2.0.1
v5.0.0-pytorch1.11.0
v5.0.0.alpha003-pytorch2.1.0
v5.0.0.alpha003-pytorch2.0.1
v5.0.0.alpha003-pytorch1.11.0
v5.0.rc3.3-pytorch1.11.0
v5.0.rc3.2-pytorch1.11.0
v5.0.0.alpha002-pytorch2.1.0
v5.0.0.alpha002-pytorch2.0.1
v5.0.0.alpha002-pytorch1.11.0
v5.0.rc3.1-pytorch1.11.0
v5.0.0.alpha001-pytorch2.1.0
v5.0.0.alpha001-pytorch2.0.1
v5.0.0.alpha001-pytorch1.11.0
v5.0.rc3-pytorch2.1.0
v5.0.rc3-pytorch2.0.1
v5.0.rc3-pytorch1.11.0
v5.0.rc3.alpha003-pytorch2.0.1
v5.0.rc3.alpha003-pytorch1.11.0
v5.0.rc3.alpha003-pytorch1.8.1
v5.0.rc2.2-pytorch1.11.0
v5.0.rc2.1-pytorch1.11.0
v5.0.rc3.alpha002-pytorch2.0.1
v5.0.rc3.alpha002-pytorch1.11.0
v5.0.rc3.alpha002-pytorch1.8.1
v5.0.rc2-pytorch2.0.1
v5.0.rc2-pytorch1.11.0
v5.0.rc2-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.8.1
v5.0.rc2.alpha002-pytorch1.11.0
v5.0.rc2.alpha002-pytorch1.8.1
v5.0.rc1.alpha003-pytorch1.11.0
v5.0.rc1.alpha003-pytorch1.8.1
v5.0.rc1-pytorch1.11.0
v5.0.rc1-pytorch1.8.1
v5.0.rc1.alpha002-pytorch1.11.0
v5.0.rc1.alpha002-pytorch1.8.1
v5.0.rc1.alpha001-pytorch1.11.0
v5.0.rc1.alpha001-pytorch1.8.1
v3.0.0-pytorch1.11.0
v3.0.0-pytorch1.8.1
v3.0.0-pytorch1.5.0
v3.0.alpha006-pytorch1.8.1
v3.0.alpha005-pytorch1.8.1
v3.0.alpha003-pytorch1.8.1
v3.0.rc3-pytorch1.11.0
v3.0.rc3-pytorch1.8.1
v3.0.rc3-pytorch1.5.0
v3.0.rc2-pytorch1.8.1
v3.0.rc2-pytorch1.5.0
v3.0.rc1-pytorch1.8.1
v3.0.rc1-pytorch1.5.0
v2.0.4
v2.0.4-rc2
v2.0.4-rc1
v2.0.3.1
v2.0.3
v2.0.3-rc4
v2.0.3-rc3
v2.0.3-rc2
v2.0.3-rc1
v2.0.2
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
Python
1
https://gitee.com/ascend/pytorch.git
[email protected]
:ascend/pytorch.git
ascend
pytorch
pytorch
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册