# swift-uvot-analysis-tools **Repository Path**: banermian/swift-uvot-analysis-tools ## Basic Information - **Project Name**: swift-uvot-analysis-tools - **Description**: Python wrappers for running through basic UVOT photometry - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-06-13 - **Last Updated**: 2025-04-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Swift UVOT analysis wrappers Python helper wrappers for HEASoft UVOT analysis tools. ``` - Runs uvotdetect and generates region files for all observations - Rudimentary data quality check by displaying all images in ds9 - Runs uvotsource on all observations -- currently set up for producing observation-by-observation light curve data (if multiple exposures exist per observation, they are summed) and SED points ``` ## Required Software [XPA](http://ds9.si.edu/site/XPA.html) , [DS9](http://ds9.si.edu/site/Download.html), [HEASoft (at least for Swift)](https://heasarc.gsfc.nasa.gov/lheasoft/download.html), [CALDB](https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_install.html)[(with data for at least for Swift)](https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift/) Python packages: ```bash $> pip -r install requirements.txt ``` ## [Tutorial Video](https://youtu.be/B9SCERNLt_0) ## Generating photometry and light curve data To see all available options: ```bash $> python run_uvot_analysis.py --help ``` ### Step1: Run uvotdetect and generate region files for all observations ```bash $> python run_uvot_analysis.py -p /path/to/Swift/data --detect ``` The directory */path/to/Swift/data/* should contain UVOT data strucutres from all observations (typically directories titled e.g., 00034934001) To run with a single observation: ```bash $> python run_uvot_analysis.py -p /path/to/Swift/data -obs 00034934001 --detect ``` ### Step2: Visually check observation from each image (this will require DS9 and XPA) ```bash $> python run_uvot_analysis.py -p /path/to/Swift/data --check ``` To view images for a single observations, run: ```bash $> python run_uvot_analysis.py -p /path/to/Swift/data -obs 00034934001 --check ``` ### Step3: Run uvotsource and extract photometry The following will run uvotsource on all observations and store photometry data in *photometry.fits* (in fits format) ```bash $> python run_uvot_analysis.py -p /path/to/Swift/data --measure ``` To only parse photometry data and store it in *MySource_photometry.cvs* (in csv format; same formats as supported by [astropy.table](http://docs.astropy.org/en/stable/table/io.html)). ***NOTE*: Do this if *uvotsource* has already been run with --measure** ```bash $> python run_uvot_analysis.py -p /path/to/Swift/data --measure -o MySource_phometry.csv --extract_only ``` As in previous steps, this works for a single observation as well. ```bash $> python run_uvot_analysis.py -p /path/to/Swift/data --measure -obs 00034934001 -o MySource_photometry.fits ```