# Diffusion_Suction **Repository Path**: btsd321/Diffusion_Suction ## Basic Information - **Project Name**: Diffusion_Suction - **Description**: forked from https://github.com/TAO-TAO-TAO-TAO-TAO/Diffusion_Suction - **Primary Language**: Python - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-10 - **Last Updated**: 2025-07-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Diffusion Suction Grasping with Large-Scale Parcel Dataset Illustration of the suction-diffusion-denoising process. ![Alt text](/images/1.gif) This is the code of pytorch version for paper: [**Diffusion Suction Grasping with Large-Scale Parcel Dataset**] ## Overview of Diffusion-Suction architecture. Illustration of the Diffusion-Suction architecture for 6DoF Pose Estimation in stacked scenarios. ![Alt text](/images/model1.png) ## Overview of Parcel-Suction-Dataset. Illustration of the Self-Parcel-Suction-Labeling pipeline. ![Alt text](/images/model2.png) ## Qualitative results Evaluation SuctionNet-1Billion dataset ![Alt text](/images/dataset1.png) Evaluation Parcel-Suction-Dataset dataset ![Alt text](/images/dataset2.png) ## Getting Started ### 1. Preparation Please clone the repository locally: ``` git clone https://github.com/TAO-TAO-TAO-TAO-TAO/Diffusion_Suction.git ``` Install the environment: Install [Pytorch](https://pytorch.org/get-started/locally/). It is required that you have access to GPUs. The code is tested with Ubuntu 16.04/18.04, CUDA 10.0 and cuDNN v7.4, python3.6. Our backbone PointNet++ is borrowed from [pointnet2](https://github.com/erikwijmans/Pointnet2_PyTorch). .Compile the CUDA layers for [PointNet++](http://arxiv.org/abs/1706.02413), which we used in the backbone network: cd train\Sparepart\train.py python train.py install Install the following Python dependencies (with `pip install`): matplotlib opencv-python plyfile 'trimesh>=2.35.39,<2.35.40' 'networkx>=2.2,<2.3' torch==1.1.0 torchvision==0.3.0 sklearn h5py nibabel ### 2. Train Diffusion-Suction cd train\Sparepart\train.py python train.py ### 3. Evaluation on the custom data Parcel-Suction-Dataset is available at [here](https://drive.google.com/drive/folders/1l4jz7LE7HXdn2evylodggReTTnip7J1Q?usp=sharing). SuctionNet-1Billion is available at [here](https://github.com/graspnet/suctionnetAPI). Evaluation metric The python code of evaluation metric is available at [here](https://github.com/graspnet/suctionnetAPI). ## Citation If you find our work useful in your research, please consider citing: @article{huang2025diffusion, title={Diffusion Suction Grasping with Large-Scale Parcel Dataset}, author={Huang, Ding-Tao and He, Xinyi and Hua, Debei and Yu, Dongfang and Lin, En-Te and Zeng, Long}, journal={arXiv preprint arXiv:2502.07238}, year={2025} } @inproceedings{huang2025diffusion, title={Diffusion Suction Grasping with Large-Scale Parcel Dataset}, author={dingtao huang, Debei Hua, Dongfang Yu, Xinyi He, Ente Lin, lianghong wang, Jinliang Hou, Long Zeng}, booktitle={2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, year={2025}, organization={IEEE} } ## Contact If you have any questions, please feel free to contact the authors. Ding-Tao Huang: [hdt22@mails.tsinghua.edu.cn](hdt22@mails.tsinghua.edu.cn)