# Flower-Recognition-using-transfer-learning **Repository Path**: cheng_xiaofeng_1996/Flower-Recognition-using-transfer-learning ## Basic Information - **Project Name**: Flower-Recognition-using-transfer-learning - **Description**: Transfer Learning using vgg16 and resNet50 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-27 - **Last Updated**: 2020-12-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Flower-Recognition-using-transfer-learning ## Transfer Learning using vgg16 and resNet50 ## Contents ### 1. Datasets: [click here](https://www.kaggle.com/alxmamaev/flowers-recognition) to download the dataset. After downloading extract the zip file. The dataset contain five listdir namely.['sunflower','tulip','daisy','rose','dandelion'] with total of 4241 images ![alt text](https://github.com/Devkul95/Flower-Recognition-using-transfer-learning/blob/master/Readme%20Images/flower.JPG) ### 2. Importing Various Modules ### 3. Preparing the Data ### 4. Vgg16 Model: Model.summary() ![alt text](https://github.com/Devkul95/Flower-Recognition-using-transfer-learning/blob/master/Readme%20Images/model.JPG) ### 5. Evaluating the Model Performance ### 6. Visualizing Predictions on the Validation Set