# pytorch-mnist-VAE **Repository Path**: cheng_xiaofeng_1996/pytorch-mnist-VAE ## Basic Information - **Project Name**: pytorch-mnist-VAE - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-29 - **Last Updated**: 2021-03-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # pytorch-mnist-VAE Variational AutoEncoder on the MNIST data set using the PyTorch ## Dependencies - PyTorch - torchvision - numpy ## Results Generated samples from 2-D latent variable with random numbers from a normal distribution with mean 0 and variance 1 ![alt text](https://github.com/lyeoni/pytorch-mnist-VAE/blob/master/samples/sample_.png) ## Reference 1. Auto-Encoding Variational Bayes. Diederik P Kingma, Max Welling (paper): https://arxiv.org/abs/1312.6114 2. 오토인코더의 모든 것 (slides): https://www.slideshare.net/NaverEngineering/ss-96581209 3. Basic VAE Example (github): https://github.com/pytorch/examples/tree/master/vae 4. hwalsuklee/tensorflow-mnist-VAE (github): https://github.com/hwalsuklee/tensorflow-mnist-VAE