# ComfyUI-KwaiKolorsWrapper **Repository Path**: comfyui_custom_nodes/ComfyUI-KwaiKolorsWrapper ## Basic Information - **Project Name**: ComfyUI-KwaiKolorsWrapper - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-07-23 - **Last Updated**: 2024-07-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ComfyUI wrapper for Kwai-Kolors Rudimentary wrapper that runs Kwai-Kolors text2image pipeline using diffusers. ## Update - safetensors Added alternative way to load the ChatGLM3 model from single safetensors file (the configs are included in this repo already). Including already quantized models: ![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/e161eee6-ffd8-4945-8905-1ca47f2a5ef1) https://huggingface.co/Kijai/ChatGLM3-safetensors/upload/main goes into: `ComfyUI\models\LLM\checkpoints` ![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/2a6c6f3f-e159-4a82-b16f-4956f9affb25) ![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/a31ab13a-b321-4cc6-b853-4a4e078eb6dc) ## Installation: Clone this repository to 'ComfyUI/custom_nodes` folder. Install the dependencies in requirements.txt, transformers version 4.38.0 minimum is required: `pip install -r requirements.txt` or if you use portable (run this in ComfyUI_windows_portable -folder): `python_embeded\python.exe -m pip install -r ComfyUI\custom_nodes\ComfyUI-KwaiKolorsWrapper\requirements.txt` Models (fp16, 16.5GB) are automatically downloaded from https://huggingface.co/Kwai-Kolors/Kolors/tree/main to `ComfyUI/models/diffusers/Kolors` Model folder structure needs to be the following: ``` PS C:\ComfyUI_windows_portable\ComfyUI\models\diffusers\Kolors> tree /F │ model_index.json │ ├───scheduler │ scheduler_config.json │ ├───text_encoder │ config.json │ pytorch_model-00001-of-00007.bin │ pytorch_model-00002-of-00007.bin │ pytorch_model-00003-of-00007.bin │ pytorch_model-00004-of-00007.bin │ pytorch_model-00005-of-00007.bin │ pytorch_model-00006-of-00007.bin │ pytorch_model-00007-of-00007.bin │ pytorch_model.bin.index.json │ tokenizer.model │ tokenizer_config.json │ vocab.txt │ └───unet config.json diffusion_pytorch_model.fp16.safetensors ``` To run this, the text enconder is what takes most of the VRAM, but can be quantized to fit approximately these amounts: | Model | Size | |--------|------| | fp16 | ~13 GB| | quant8 | ~8 GB | | quant4 | ~4 GB | After that, the sampling single image at 1024 can be expected to take similar amounts than SDXL. For VAE the base SDXL VAE is used. ![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/ada4ac93-58ee-4957-96cd-2b327579d4f8) ![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/b6a17074-be09-4075-b66f-7857c871057a)