# HEDGE **Repository Path**: compasslebin_admin/HEDGE ## Basic Information - **Project Name**: HEDGE - **Description**: Code for the paper "Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-02-06 - **Last Updated**: 2023-11-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HEDGE Code for the paper ["Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection"](https://arxiv.org/abs/2004.02015) ### Requirement: - torchtext == 0.4.0 - gensim == 3.4.0 - pytorch == 1.2.0 - numpy == 1.16.4 ### Model and data: Download well-trained [models and data](https://drive.google.com/drive/folders/1_ME4CbVsDGt_UBqwu8Df7m9CsAut5IXZ?usp=sharing). ### Generate explanations: We provide the example code of HEDGE interpreting the LSTM, CNN and BERT model on the IMDB dataset. We adopt the BERT-base model built by huggingface: https://github.com/huggingface/transformers. In each folder, run the following command to generate explanations on the test data for a well-trained model. ``` python hedge_main_model_imdb.py --save /path/to/your/model ``` We save the start-end word indexes of text spans in a hierarchy (in the order of importance) into the "hedge_interpretation_index.txt" file. To visualize the hierarchical explanation of a sentence, run ``` python hedge_main_model_imdb.py --save /path/to/your/model --visualize 1(the index of the sentence) ``` ### Reference: If you find this repository helpful, please cite our paper: ```bibtex @inproceedings{chen2020generating, title={Generating hierarchical explanations on text classification via feature interaction detection}, author={Chen, Hanjie and Zheng, Guangtao and Ji, Yangfeng}, booktitle={ACL}, url={https://arxiv.org/abs/2004.02015}, year={2020} } ```