# bokeh
**Repository Path**: cxxowl/bokeh
## Basic Information
- **Project Name**: bokeh
- **Description**: Interactive Web Plotting for Python
- **Primary Language**: Python
- **License**: BSD-3-Clause
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-04-10
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
Bokeh
=====
*Bokeh is a fiscally sponsored project of [NumFOCUS](http://numfocus.org), a nonprofit dedicated to supporting the open-source scientific computing community. If you like Bokeh and would like to support our mission, please consider [making a donation](https://numfocus.salsalabs.org/donate-to-bokeh/index.html).*
| Latest Release |
|
Conda |
|
| License |
|
PyPI |
|
| Sponsorship |
|
Live Tutorial |
|
| Build Status |
|
Support |
|
| Static Analysis |
|
Twitter |
|
Bokeh is an interactive visualization library for Python that enables beautiful
and meaningful visual presentation of data in modern web browsers. With Bokeh,
you can quickly and easily create interactive plots, dashboards, and data
applications.
Bokeh provides an elegant and concise way to construct versatile graphics while
delivering **high-performance** interactivity for large or streamed datasets.
[Interactive gallery](https://bokeh.pydata.org/en/latest/docs/gallery.html)
---------------------------------------------------------------------------
Installation
------------
The easiest way to install Bokeh is using the [Anaconda Python distribution](https://www.anaconda.com/what-is-anaconda/) and its included *Conda* package management system. To install Bokeh and its required dependencies, enter the following command at a Bash or Windows command prompt:
```
conda install bokeh
```
To install using pip, enter the following command at a Bash or Windows command prompt:
```
pip install bokeh
```
For more information, refer to the [installation documentation](https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html#quick-installation).
Once Bokeh is installed, check out the [Getting Started](https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html#getting-started) section of the [Quickstart guide](https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html).
Documentation
-------------
Visit the [Bokeh site](https://bokeh.pydata.org/en/latest) for information and full documentation, or [launch the Bokeh tutorial](https://mybinder.org/v2/gh/bokeh/bokeh-notebooks/master?filepath=tutorial%2F00%20-%20Introduction%20and%20Setup.ipynb) to learn about Bokeh in live Jupyter Notebooks.
Contribute to Bokeh
-------------------
If you would like to contribute to Bokeh, please review the [Developer Guide](https://bokeh.pydata.org/en/latest/docs/dev_guide.html).
Follow us
---------
Follow us on Twitter [@bokehplots](https://twitter.com/BokehPlots)