# bokeh **Repository Path**: cxxowl/bokeh ## Basic Information - **Project Name**: bokeh - **Description**: Interactive Web Plotting for Python - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-10 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Bokeh ===== *Bokeh is a fiscally sponsored project of [NumFOCUS](http://numfocus.org), a nonprofit dedicated to supporting the open-source scientific computing community. If you like Bokeh and would like to support our mission, please consider [making a donation](https://numfocus.salsalabs.org/donate-to-bokeh/index.html).*
Latest Release Latest release version npm version Conda Conda downloads per month
License Bokeh license (BSD 3-clause) PyPI PyPI downloads per month
Sponsorship Powered by NumFOCUS Live Tutorial Live Bokeh tutorial notebooks on MyBinder
Build Status Current TravisCI build status Current Appveyor build status Support Community Support on discourse.bokeh.org
Static Analysis BetterCodeHub static analysis Twitter Follow BokehPlots on Twitter
Bokeh is an interactive visualization library for Python that enables beautiful and meaningful visual presentation of data in modern web browsers. With Bokeh, you can quickly and easily create interactive plots, dashboards, and data applications. Bokeh provides an elegant and concise way to construct versatile graphics while delivering **high-performance** interactivity for large or streamed datasets. [Interactive gallery](https://bokeh.pydata.org/en/latest/docs/gallery.html) ---------------------------------------------------------------------------

colormapped image plot thumbnail anscombe plot thumbnail stocks plot thumbnail lorenz attractor plot thumbnail candlestick plot thumbnail scatter plot thumbnail SPLOM plot thumbnail
iris dataset plot thumbnail histogram plot thumbnail periodic table plot thumbnail choropleth plot thumbnail burtin antibiotic data plot thumbnail streamline plot thumbnail RGBA image plot thumbnail
stacked bars plot thumbnail quiver plot thumbnail elements data plot thumbnail boxplot thumbnail categorical plot thumbnail unemployment data plot thumbnail Les Mis co-occurrence plot thumbnail

Installation ------------ The easiest way to install Bokeh is using the [Anaconda Python distribution](https://www.anaconda.com/what-is-anaconda/) and its included *Conda* package management system. To install Bokeh and its required dependencies, enter the following command at a Bash or Windows command prompt: ``` conda install bokeh ``` To install using pip, enter the following command at a Bash or Windows command prompt: ``` pip install bokeh ``` For more information, refer to the [installation documentation](https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html#quick-installation). Once Bokeh is installed, check out the [Getting Started](https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html#getting-started) section of the [Quickstart guide](https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html). Documentation ------------- Visit the [Bokeh site](https://bokeh.pydata.org/en/latest) for information and full documentation, or [launch the Bokeh tutorial](https://mybinder.org/v2/gh/bokeh/bokeh-notebooks/master?filepath=tutorial%2F00%20-%20Introduction%20and%20Setup.ipynb) to learn about Bokeh in live Jupyter Notebooks. Contribute to Bokeh ------------------- If you would like to contribute to Bokeh, please review the [Developer Guide](https://bokeh.pydata.org/en/latest/docs/dev_guide.html). Follow us --------- Follow us on Twitter [@bokehplots](https://twitter.com/BokehPlots)

NumFocus Logo