diff --git a/models/cv/classification/ixrt_common/config/RESNETV1D50_CONFIG b/models/cv/classification/ixrt_common/config/RESNETV1D50_CONFIG index 0bf91b048fc29cee29714b613cff22cc5874d66c..2c87e1d70901fb26ca07fd4c96fe5c75d4e15df6 100644 --- a/models/cv/classification/ixrt_common/config/RESNETV1D50_CONFIG +++ b/models/cv/classification/ixrt_common/config/RESNETV1D50_CONFIG @@ -26,7 +26,7 @@ ORIGINE_MODEL=resnet_v1_d50.onnx # QUANT_SEED : 随机种子 保证量化结果可复现 # QUANT_EXIST_ONNX : 如果有其他来源的量化模型则填写 QUANT_OBSERVER=minmax -QUANT_BATCHSIZE=1 +QUANT_BATCHSIZE=32 QUANT_STEP=32 QUANT_SEED=42 DISABLE_QUANT_LIST= diff --git a/models/cv/object_detection/retinaface/ixrt/inference.py b/models/cv/object_detection/retinaface/ixrt/inference.py index 7c93103cf154e9fb2f46af9d685084ed357c89c6..3d99cb818846f27ab47f47f543c0a2f18e57d92f 100644 --- a/models/cv/object_detection/retinaface/ixrt/inference.py +++ b/models/cv/object_detection/retinaface/ixrt/inference.py @@ -83,6 +83,8 @@ def post_process(args, prior_data, locs, confs, landms, resizes, img_files, net_ dets = np.concatenate((dets, landm), axis=1) # -------------------------------------------------------------------- + if img_name.startswith("/"): + img_name = img_name[1:] save_name = os.path.join(args.save_folder, f"{img_name[:-4]}.txt") dirname = os.path.dirname(save_name) if not os.path.isdir(dirname): diff --git a/models/cv/object_detection/yolov4/igie/README.md b/models/cv/object_detection/yolov4/igie/README.md index 99dee0ffd8824adbfa3f56cc3ab0b9529e987295..506f8f669ce50e201757eb8ca24fcd75aae27c06 100644 --- a/models/cv/object_detection/yolov4/igie/README.md +++ b/models/cv/object_detection/yolov4/igie/README.md @@ -16,6 +16,7 @@ YOLOv4 employs a two-step process, involving regression for bounding box positio ### Prepare Resources Pretrained cfg: + Pretrained model: Dataset: diff --git a/models/cv/object_detection/yolov4/ixrt/README.md b/models/cv/object_detection/yolov4/ixrt/README.md index 60b73eb00a8d7d394bf9da9dfa3bd6bfbf211606..9cfb9f8be49b8fdea788084b36e4c350c25f5908 100644 --- a/models/cv/object_detection/yolov4/ixrt/README.md +++ b/models/cv/object_detection/yolov4/ixrt/README.md @@ -16,6 +16,7 @@ YOLOv4 employs a two-step process, involving regression for bounding box positio ### Prepare Resources Pretrained cfg: + Pretrained model: Dataset: diff --git a/tests/model_info.json b/tests/model_info.json index b13dcb19066e012d6f0e33e855ec23ae7bf44aa3..11d7dff9f164d1569d63fb8bc717e7b9507da601 100644 --- a/tests/model_info.json +++ b/tests/model_info.json @@ -2493,7 +2493,8 @@ "download_url": "https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth", "need_third_part": false, "precisions": [ - "fp16" + "fp16", + "int8" ], "type": "inference", "hasDemo": false,