# kubeflow-fairing **Repository Path**: garlong/kubeflow-fairing ## Basic Information - **Project Name**: kubeflow-fairing - **Description**: github太烂,搬过来看 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-31 - **Last Updated**: 2021-08-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (ML) models in a hybrid cloud environment. By using Kubeflow Fairing and adding a few lines of code, you can run your ML training job locally or in the cloud, directly from Python code or a Jupyter notebook. After your training job is complete, you can use Kubeflow Fairing to deploy your trained model as a prediction endpoint. ## Use Kubeflow Fairing SDK To install the SDK: ``` pip install kubeflow-fairing ``` To quick start, you can run the [E2E MNIST sample](examples/mnist). ## Documentation ``` 没有文档,基本看ipynb文件, examples/pytorch/mnist/mnist.ipynb examples/aws/backend.ipynb做镜像的接口的例子 examples/distributed-training/main.pyexamples的例子 examples/gcp/hello-world-gpu-pytorch.py,就hello-world examples/kubeflow-gke/main.py """Trains and Evaluates the MNIST network using a feed dictionary.""" tensorflow examples/kubeflow/main.py """Trains and Evaluates the MNIST network using a feed dictionary.""" tensorflow examples/kubeflow/main_ocp.py """Trains and Evaluates the MNIST network using a feed dictionary.""" tensorflow ocp examples/kubernetes-in-cluster-builder/main.py 和上面一样,不过是cluster的 examples/kubernetes/main.py MNIST tensorflow examples/lightgbm ibm的,Dockerfile有用到google的什么cloud,gcr。可以不用,去掉这个 examples/mnist TFjob的,训练和上KFserving,运行预测推理,删除清理等 examples/notebook XGBoost训练评估,用GCPServingDeployer进行gcp部署,远端训练 examples/prediction/HousingTrain.py 房价预测模型训练,评估,保存 examples/prediction/HousingServe.py 部署seldon examples/prediction/xgboost-gkeop.ipynb 部署kubeflow,gcp部署,http访问 examples/prediction/xgboost-high-level-apis.ipynb notebook里提交kubeflow训练任务,发布服务,跑预测,删除服务。 examples/prediction/xgboost-train-and-deploy-in-gcp-from-local-notebook.ipynb KF remote训练,上KF服务 examples/pytorch/mnist/mnist.ipynb kubeflow开job训练pytorch卷积神经网络,可以用cuda examples/simple/main.py 弹子复流,单容器训练。 examples/train_job_api/main.ipynb 指定内存cpu数,提交训练任务。 ``` To learn how Kubeflow Fairing streamlines the process of training and deploying ML models in the cloud, read the [Kubeflow Fairing documentation][fairing-overview]. To learn the Kubeflow Fairing SDK API, read the [HTML documentation][html-doc]. [fairing-overview]: https://www.kubeflow.org/docs/components/fairing/fairing-overview/ [html-doc]: https://kubeflow-fairing.readthedocs.io/en/latest/index.html