# up-detr
**Repository Path**: gnulinux123/up-detr
## Basic Information
- **Project Name**: up-detr
- **Description**: Transformer目标检测up-detr
- **Primary Language**: Python
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 3
- **Created**: 2023-07-02
- **Last Updated**: 2023-07-02
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
**UP-DETR**: Unsupervised Pre-training for Object Detection with Transformers
========
This is the official PyTorch implementation and models for [UP-DETR paper](https://arxiv.org/abs/2011.09094):
```
@article{dai2020up-detr,
author = {Zhigang Dai and Bolun Cai and Yugeng Lin and Junying Chen},
title = {UP-DETR: Unsupervised Pre-training for Object Detection with Transformers},
journal = {arXiv preprint arXiv:2011.09094},
year = {2020},
}
```
In UP-DETR, we introduce a novel pretext named **random query patch detection** to pre-train transformers for object detection.
UP-DETR inherits from DETR with the same ResNet-50 backbone, same Transformer encoder, decoder and same codebase.
With unsupervised pre-training CNN, the whole UP-DETR model doesn't require any human annotations.
UP-DETR achieves **43.1 AP** on COCO with 300 epochs fine-tuning. The AP of open-source version is a little higher than paper report.

# Model Zoo
We provide pre-training UP-DETR and fine-tuning UP-DETR models on COCO, and plan to include more in future.
The evaluation metric is same to [DETR](https://github.com/facebookresearch/detr).
Here is the UP-DETR model pre-trained on **ImageNet** without labels.
The CNN weight is initialized from [SwAV](https://github.com/facebookresearch/swav), which is fixed during the transformer **pre-training**:
name |
backbone |
epochs |
url |
size |
md5 |
UP-DETR |
R50 (SwAV) |
60 |
model | logs |
164Mb |
49f01f8b |
The result of UP-DETR **fine-tuned** on **COCO**:
name |
backbone (pre-train) |
epochs |
box AP |
APS |
APM |
APL |
url |
DETR |
R50 (Supervised) |
500 |
42.0 |
20.5 |
45.8 |
61.1 |
- |
DETR |
R50 (SwAV) |
300 |
42.1 |
19.7 |
46.3 |
60.9 |
- |
UP-DETR |
R50 (SwAV) |
300 |
43.1 |
21.6 |
46.8 |
62.4 |
model | logs |
COCO val5k evaluation results of UP-DETR can be found in this [gist](https://gist.github.com/dddzg/cd0957c5643f5656f6cdc979da4d6db1).
# Usage - Object Detection
There are no extra compiled components in UP-DETR and package dependencies are same to DETR.
We provide instructions how to install dependencies via conda:
```
git clone tbd
conda install -c pytorch pytorch torchvision
conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
```
UP-DETR follows two steps: **pre-training** and **fine-tuning**.
We present the model pre-trained on ImageNet and then fine-tuned on COCO.
## Unsupervised Pre-training
### Data Preparation
Download and extract ILSVRC2012 train dataset.
We expect the directory structure to be the following:
```
path/to/imagenet/
n06785654/ # caterogey directory
n06785654_16140.JPEG # images
n04584207/ # caterogey directory
n04584207_14322.JPEG # images
```
Images can be organized disorderly because our pre-training is unsupervised.
### Pre-training
To pr-train UP-DETR on a single node with 8 gpus for 60 epochs, run:
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \
--lr_drop 40 \
--epochs 60 \
--pre_norm \
--num_patches 10 \
--batch_size 32 \
--feature_recon \
--fre_cnn \
--imagenet_path path/to/imagenet \
--output_dir path/to/save_model
```
As the size of pre-training images is relative small, so we can set a large batch size.
It takes about 2 hours for a epoch, so 60 epochs pre-training takes about 5 days with 8 V100 gpus.
In our further ablation experiment, we found that object query shuffle is not helpful. So, we remove it in the open-source version.
## Fine-tuning
### Data Preparation
Download and extract [COCO 2017 dataset](https://cocodataset.org/#download) train and val dataset.
The directory structure is expected as follows:
```
path/to/coco/
annotations/ # annotation json files
train2017/ # train images
val2017/ # val images
```
### Fine-tuning
To fine-tune UP-DETR with 8 gpus for 300 epochs, run:
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env detr_main.py \
--lr_drop 200 \
--epochs 300 \
--lr_backbone 5e-4 \
--pre_norm \
--coco_path path/to/coco \
--pretrain path/to/save_model/checkpoint.pth
```
The fine-tuning cost is exactly same to DETR, which takes 28 minutes with 8 V100 gpus. So, 300 epochs training takes about 6 days.
The model can also extended to panoptic segmentation, checking more details on [DETR](https://github.com/facebookresearch/detr/blob/master/README.md#usage---segmentation).
### Evaluation
```
python detr_main.py \
--batch_size 2 \
--eval \
--no_aux_loss \
--pre_norm \
--coco_path path/to/coco \
--resume path/to/save_model/checkpoint.pth
```
COCO val5k evaluation results of UP-DETR can be found in this [gist](https://gist.github.com/dddzg/cd0957c5643f5656f6cdc979da4d6db1).
# Notebook
We provide a notebook in colab to get the visualization result in the paper:
* [Visualization Notebook](https://colab.research.google.com/github/dddzg/up-detr/blob/master/visualization.ipynb): This notebook shows how to perform query patch detection with the pre-training model (without any annotations fine-tuning).

# License
UP-DETR is released under the Apache 2.0 license. Please see the [LICENSE](LICENSE) file for more information.