# MiniCPM4.1-8B-GPTQ **Repository Path**: hf-models/MiniCPM4.1-8B-GPTQ ## Basic Information - **Project Name**: MiniCPM4.1-8B-GPTQ - **Description**: Mirror of https://huggingface.co/openbmb/MiniCPM4.1-8B-GPTQ - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-07 - **Last Updated**: 2025-09-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README --- license: apache-2.0 language: - zh - en pipeline_tag: text-generation library_name: transformers ---

GitHub Repo | Technical Report | Join Us

πŸ‘‹ Contact us in Discord and WeChat

## What's New - [2025.09.05] **MiniCPM4.1** series are released! This series is a hybrid reasoning model, which can be used in both deep reasoning mode and non-reasoning mode. πŸ”₯πŸ”₯πŸ”₯ - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).πŸ”₯πŸ”₯πŸ”₯ ## MiniCPM4 and MiniCPM4.1 Series MiniCPM4 and MiniCPM4.1 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems. - [MiniCPM4.1-8B](https://huggingface.co/openbmb/MiniCPM4.1-8B): The latest version of MiniCPM4, with 8B parameters, support fusion thinking. - [MiniCPM4.1-8B-GPTQ](https://huggingface.co/openbmb/MiniCPM4.1-8B-GPTQ): MiniCPM4.1-8B in GPTQ format. (**<-- you are here**) - [MiniCPM4.1-8B-AutoAWQ](https://huggingface.co/openbmb/MiniCPM4.1-8B-AutoAWQ): MiniCPM4.1-8B in AutoAWQ format. - [MiniCPM-4.1-8B-Marlin](https://huggingface.co/openbmb/MiniCPM-4.1-8B-Marlin): MiniCPM4.1-8B in Marlin format. - [MiniCPM4.1-8B-GGUF](https://huggingface.co/openbmb/MiniCPM4.1-8B-GGUF): MiniCPM4.1-8B in GGUF format. - [MiniCPM4.1-8B-MLX](https://huggingface.co/openbmb/MiniCPM4.1-8B-MLX): MiniCPM4.1-8B in MLX format. - [MiniCPM4.1-8B-Eagle3](https://huggingface.co/openbmb/MiniCPM4.1-8B-Eagle3): Eagle3 model for MiniCPM4.1-8B. - **MiniCPM4 Series**
Click to expand all MiniCPM4 series models - [**MiniCPM4-8B**](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship model with 8B parameters, trained on 8T tokens - [**MiniCPM4-0.5B**](https://huggingface.co/openbmb/MiniCPM4-0.5B): Lightweight version with 0.5B parameters, trained on 1T tokens - [**MiniCPM4-8B-Eagle-FRSpec**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference - [**MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head with QAT for FRSpec, integrating speculation and quantization for ultra acceleration - [**MiniCPM4-8B-Eagle-vLLM**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format for speculative inference - [**MiniCPM4-8B-marlin-Eagle-vLLM**](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format - [**BitCPM4-0.5B**](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization of MiniCPM4-0.5B, achieving 90% bit width reduction - [**BitCPM4-1B**](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization of MiniCPM3-1B, achieving 90% bit width reduction - [**MiniCPM4-Survey**](https://huggingface.co/openbmb/MiniCPM4-Survey): Generates trustworthy, long-form survey papers from user queries - [**MiniCPM4-MCP**](https://huggingface.co/openbmb/MiniCPM4-MCP): Integrates MCP tools to autonomously satisfy user requirements
## Introduction MiniCPM4 and MiniCPM4.1 are extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements. - πŸ—οΈ **Efficient Model Architecture:** - InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts - 🧠 **Efficient Learning Algorithms:** - Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search - BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction - Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy - πŸ“š **High-Quality Training Data:** - UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb) - UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data - ⚑ **Efficient Inference System:** - CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding - ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities ## Usage ### Prebuilt [vllm](https://github.com/vllm-project/vllm.git) ```bash pip install vllm ``` ### Inference ```python import os import multiprocessing os.environ['VLLM_USE_V1'] = '0' multiprocessing.set_start_method('spawn', force=True) from vllm import LLM, SamplingParams prompt = "εŒ—δΊ¬ζœ‰δ»€δΉˆε₯½ηŽ©ηš„εœ°ζ–Ή" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=1500) llm = LLM(model="MiniCPM4.1-8B-GPTQ", trust_remote_code = True) tokenizer = llm.get_tokenizer() messages = [{"role": "user", "content": prompt}] # if open think mode, use the following code formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # if close think mode, use the following code # formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=False) outputs = llm.generate([formatted_prompt], sampling_params) print("-"*50) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}") print("-"*50) ```