# imagefusion_mdlatlrr **Repository Path**: hli1221/imagefusion_mdlatlrr ## Basic Information - **Project Name**: imagefusion_mdlatlrr - **Description**: MDLatLRR (IEEE TIP 2020) - **Primary Language**: Matlab - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-05-01 - **Last Updated**: 2022-05-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: image-fusion, LatLRR, multi-level ## README # MDLatLRR: A novel decomposition method for infrared and visible image fusion [Hui Li](https://hli1221.github.io/), Xiao-Jun Wu*, Josef Kittler IEEE Trans. Image Process., 2020, doi: 10.1109/TIP.2020.2975984 [IEEEXplore](https://ieeexplore.ieee.org/document/9018389) ## Note In 'main.m' file, you will find how to run these codes. In 'analysis' file, you will find the codes of evaluate metrics. ## Platform MATLAB R2017b on 2.8 GHz Intel(R) Core(TM) i5-8400 CPU with 16 GB RAM. ## Fusion framework ![](https://github.com/hli1221/imagefusion_mdlatlrr/blob/master/figures/framework.png) ## Latent Low-Rank Representation ## Multi-level decomposition with Latent LRR ### DLatLRR and MDLatLRR ### MDLatLRR ## MDLatLRR for RGBT visual object tracking The VOT-RGBT2019 sub-challenge benchmark is available at [here](http://www.votchallenge.net/vot2019/dataset.html). The frames fused by MDLatLRR are fed into two trackers ([LADCF](https://github.com/XU-TIANYANG/LADCF), [GFSDCF](https://github.com/XU-TIANYANG/GFS-DCF)). The frames in first row and second row are selected from 'car10' and 'car41' (VOT-RGBT 2019), respectively. First three columns are the results of LADCF. And the last three columns are the tracking results of GFSDCF. The [RGB] and [infrared] denote the input of trackers is just one modality data (RGB or infrared). The [level-1] to [level-4] demonstrate that the input of trackers is the fused frames which are generated by MDLatLRR. ![](https://github.com/hli1221/imagefusion_mdlatlrr/blob/master/figures/rgbt-label-all.png) If you have any question about this code, feel free to reach me(hui_li_jnu@163.com) # Citation ``` @article{li2020mdlatlrr, author = {Li, Hui and Wu, Xiao-Jun and Kittler, Josef}, title = {MDLatLRR: A novel decomposition method for infrared and visible image fusion}, note = {doi: 10.1109/TIP.2020.2975984}, year = {2020}, journal = {IEEE Transactions on Image Processing}, publisher={IEEE} } ```