# imagefusion_mdlatlrr
**Repository Path**: hli1221/imagefusion_mdlatlrr
## Basic Information
- **Project Name**: imagefusion_mdlatlrr
- **Description**: MDLatLRR (IEEE TIP 2020)
- **Primary Language**: Matlab
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2022-05-01
- **Last Updated**: 2022-05-01
## Categories & Tags
**Categories**: Uncategorized
**Tags**: image-fusion, LatLRR, multi-level
## README
# MDLatLRR: A novel decomposition method for infrared and visible image fusion
[Hui Li](https://hli1221.github.io/), Xiao-Jun Wu*, Josef Kittler
IEEE Trans. Image Process., 2020, doi: 10.1109/TIP.2020.2975984
[IEEEXplore](https://ieeexplore.ieee.org/document/9018389)
## Note
In 'main.m' file, you will find how to run these codes.
In 'analysis' file, you will find the codes of evaluate metrics.
## Platform
MATLAB R2017b on 2.8 GHz Intel(R) Core(TM) i5-8400 CPU with 16 GB RAM.
## Fusion framework

## Latent Low-Rank Representation
## Multi-level decomposition with Latent LRR
### DLatLRR and MDLatLRR
### MDLatLRR
## MDLatLRR for RGBT visual object tracking
The VOT-RGBT2019 sub-challenge benchmark is available at [here](http://www.votchallenge.net/vot2019/dataset.html).
The frames fused by MDLatLRR are fed into two trackers ([LADCF](https://github.com/XU-TIANYANG/LADCF), [GFSDCF](https://github.com/XU-TIANYANG/GFS-DCF)).
The frames in first row and second row are selected from 'car10' and 'car41' (VOT-RGBT 2019), respectively.
First three columns are the results of LADCF. And the last three columns are the tracking results of GFSDCF.
The [RGB] and [infrared] denote the input of trackers is just one modality data (RGB or infrared). The [level-1] to [level-4] demonstrate that the input of trackers is the fused frames which are generated by MDLatLRR.

If you have any question about this code, feel free to reach me(hui_li_jnu@163.com)
# Citation
```
@article{li2020mdlatlrr,
author = {Li, Hui and Wu, Xiao-Jun and Kittler, Josef},
title = {MDLatLRR: A novel decomposition method for infrared and visible image fusion},
note = {doi: 10.1109/TIP.2020.2975984},
year = {2020},
journal = {IEEE Transactions on Image Processing},
publisher={IEEE}
}
```