# yolo-tensorrt **Repository Path**: hllyzms_hllyzms/yolo-tensorrt ## Basic Information - **Project Name**: yolo-tensorrt - **Description**: yolo-tensorrt 部署 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-11 - **Last Updated**: 2022-05-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Yolov5 Yolov4 Yolov3 TensorRT Implementation ![GitHub stars](https://img.shields.io/github/stars/enazoe/yolo-tensorrt) ![GitHub forks](https://img.shields.io/github/forks/enazoe/yolo-tensorrt) ![GitHub watchers](https://img.shields.io/github/watchers/enazoe/yolo-tensorrt) [![Gitter](https://badges.gitter.im/yolo-tensorrt/community.svg)](https://gitter.im/yolo-tensorrt/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) __news:__ 2021.06.04:yolov5-v5.0 support ![](./configs/result.jpg) ## INTRODUCTION The project is the encapsulation of nvidia official yolo-tensorrt [implementation](https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps). And you must have the trained yolo model(__.weights__) and __.cfg__ file from the darknet (yolov3 & yolov4). For the [yolov5](https://github.com/ultralytics/yolov5) ,you should prepare the model file (yolov5s.yaml) and the trained weight file (yolov5s.pt) from pytorch. ![](./configs/yolo-trt.png) - [x] yolov5s , yolov5m , yolov5l , yolov5x ,yolov5-p6 [tutorial](yolov5_tutorial.md) - [x] yolov4 , yolov4-tiny - [x] yolov3 , yolov3-tiny ## Features - [x] inequal net width and height - [x] batch inference - [x] support FP32,FP16,INT8 - [ ] dynamic input size ## PLATFORM & BENCHMARK - [x] windows 10 - [x] ubuntu 18.04 - [x] L4T (Jetson platform)
BENCHMARK #### x86 (inference time) | model | size | gpu | fp32 | fp16 | INT8 | | :-----: | :-----: | :----: | :--: | :--: | :--: | | yolov5s | 640x640 | 1080ti | 8ms | / | 7ms | | yolov5m | 640x640 | 1080ti | 13ms | / | 11ms | | yolov5l | 640x640 | 1080ti | 20ms | / | 15ms | | yolov5x | 640x640 | 1080ti | 30ms | / | 23ms | #### Jetson NX with Jetpack4.4.1 (inference / detect time) | model | size | gpu | fp32 | fp16 | INT8 | | :-------------: | :----: | :--: | :--: | :--: | :--: | | yolov3 | 416x416 | nx | 105ms/120ms | 30ms/48ms | 20ms/35ms | | yolov3-tiny | 416x416 | nx | 14ms/23ms | 8ms/15ms | 12ms/19ms | | yolov4-tiny | 416x416 | nx | 13ms/23ms | 7ms/16ms | 7ms/15ms | | yolov4 | 416x416 | nx | 111ms/125ms | 55ms/65ms | 47ms/57ms | | yolov5s | 416x416 | nx | 47ms/88ms | 33ms/74ms | 28ms/64ms | | yolov5m | 416x416 | nx | 110ms/145ms | 63ms/101ms | 49ms/91ms | | yolov5l | 416x416 | nx | 205ms/242ms | 95ms/123ms | 76ms/118ms | | yolov5x | 416x416 | nx | 351ms/405ms | 151ms/183ms | 114ms/149ms | ### ubuntu | model | size | gpu | fp32 | fp16 | INT8 | | :-------------: | :----: | :--: | :--: | :--: | :--: | | yolov4 | 416x416 | titanv | 11ms/17ms | 8ms/15ms | 7ms/14ms | | yolov5s | 416x416 | titanv | 7ms/22ms | 5ms/20ms | 5ms/18ms | | yolov5m | 416x416 | titanv | 9ms/23ms | 8ms/22ms | 7ms/21ms | | yolov5l | 416x416 | titanv | 17ms/28ms | 11ms/23ms | 11ms/24ms | | yolov5x | 416x416 | titanv | 25ms/40ms | 15ms/27ms | 15ms/27ms |
## WRAPPER Prepare the pretrained __.weights__ and __.cfg__ model. ```c++ Detector detector; Config config; std::vector res; detector.detect(vec_image, res) ``` ## Build and use yolo-trt as DLL or SO libraries ### windows10 - dependency : TensorRT 7.1.3.4 , cuda 11.0 , cudnn 8.0 , opencv4 , vs2015 - build: open MSVC _sln/sln.sln_ file - dll project : the trt yolo detector dll - demo project : test of the dll ### ubuntu & L4T (jetson) The project generate the __libdetector.so__ lib, and the sample code. **_If you want to use the libdetector.so lib in your own project,this [cmake file](https://github.com/enazoe/yolo-tensorrt/blob/master/scripts/CMakeLists.txt) perhaps could help you ._** ```bash git clone https://github.com/enazoe/yolo-tensorrt.git cd yolo-tensorrt/ mkdir build cd build/ cmake .. make ./yolo-trt ``` ## API ```c++ struct Config { std::string file_model_cfg = "configs/yolov4.cfg"; std::string file_model_weights = "configs/yolov4.weights"; float detect_thresh = 0.9; ModelType net_type = YOLOV4; Precision inference_precison = INT8; int gpu_id = 0; std::string calibration_image_list_file_txt = "configs/calibration_images.txt"; }; class API Detector { public: explicit Detector(); ~Detector(); void init(const Config &config); void detect(const std::vector &mat_image,std::vector &vec_batch_result); private: Detector(const Detector &); const Detector &operator =(const Detector &); class Impl; Impl *_impl; }; ``` ## REFERENCE - https://github.com/wang-xinyu/tensorrtx/tree/master/yolov4 - https://github.com/mj8ac/trt-yolo-app_win64 - https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps ## Contact 微信关注公众号EigenVison,回复yolo获取交流群号 ![](./configs/qrcode.jpeg)