# robust_vehicle_control **Repository Path**: jeffreychan/robust_vehicle_control ## Basic Information - **Project Name**: robust_vehicle_control - **Description**: GCMPC-based controller for CaRINA autonomous vehicle - **Primary Language**: Matlab - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2018-06-07 - **Last Updated**: 2020-12-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Guaranteed Cost Model Predictive Control for Autonomous Vehicle Trajectory Tracking This repository contains the MATLAB implementation of the robust controller designed for CaRINA autonomous vehicle. It contains: - The source code for the controller and observer synthesis; - The Simulink environment for the system simulation. ## Pre-requisites ### Controller synthesis and simulation (MATLAB) The Matlab source code in this repository requires: - [MATLAB R2015b](http://www.mathworks.com/products/matlab/) and - [YALMIP Toolbox](http://users.isy.liu.se/johanl/yalmip/) - [Mosek](https://www.mosek.com/) Note: Mosek has free-licenses for Academia. ### Controller implementation (Python) The python souce code in this repository requires: - [Python 2.7](https://www.python.org/download/releases/2.7/) and - [NumPy](http://www.numpy.org) - [SciPy](http://www.scipy.org) ### Installing pre-requisites #### Yalmip and SeDuMi 1. Create a folder named **tbxmanager** 2. Go to this folder in Matlab 3. Execute `urlwrite('http://www.tbxmanager.com/tbxmanager.m', 'tbxmanager.m');` 4. Execute `tbxmanager install yalmip sedumi` 5. Edit/create startup.m in your Matlab startup folder and add `tbxmanager restorepath` there *Note: Many thanks to Michal Kvasnica, Johan Lfberg and Jos Sturm for creating these wonderful tools* #### NumPy and SciPy 1. Open terminal 2. Execute `sudo apt-get install -y python-pip` 3. Execute `pip install numpy` 4. Execute `pip install scipy` *Note: You should have pyton 2.7 intalled in your (Linux) system already* ## Running the examples The synthesis and simulation are self contrained. To execute them simply type ```matlab >> sim_init >> sim_execute ``` ## Citing The paper is currently being written, this section will be updated once its pre-print is available.