# time-series-classification **Repository Path**: jevoncode/time-series-classification ## Basic Information - **Project Name**: time-series-classification - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-11 - **Last Updated**: 2021-10-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Time Series Classification Install tsfresh (`pip install tsfresh`). Edit `config.py` for the dataset you want to handle. By default, it's _Wafer_. Two more are provided in the `data\` directory: _Ford A_ and _Ford B_. You can use any dataset from the [UEA & UCR Time Series Classification Repository](http://www.timeseriesclassification.com/dataset.php). When ready, run 1. `extract_features.py` 2. `select_features.py` 3. `train_and_evaluate.py` Step one takes some time, so you can skip it - each dataset directory already contains extracted features. The code uses Python 2 (print statements).