# Inception-resnet-v2 **Repository Path**: jia0510/Inception-resnet-v2 ## Basic Information - **Project Name**: Inception-resnet-v2 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-11-27 - **Last Updated**: 2021-11-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Inception-resnet-v2 Test ============================ Original Paper: "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"(https://arxiv.org/abs/1602.07261) from Google ## Notes ### Data augmentation applied (please find the data augmentation fork in https://github.com/twtygqyy/caffe-augmentation): ``` max_color_shift = 5 contrast_variation = 0.8 ~ 1.2 max_brightness_shift = 5 mirror = true min_side = 328 ~ 480 and crop by 299x299 for training, min_side = 328 and crop by 299x299 for testing init learning rate = 0.072 with RMSProp optimizer (rms_decay = 0.9 delta = 0.9) max_iter = 1066080 stepsize = 6663 gamma = 0.94 weight_decay = 0.0004 clip_gradients = 80 4 Geforce 1080 GPU are used for training and batch size = 5 x 4 (Very huge memory required for training) ``` ## Result Test net output #0: accuracy_top1 = 0.729467 Test net output #1: accuracy_top5 = 0.904265 Model link: https://drive.google.com/file/d/0B5i4atpKg9EcOGRqUExXZVNxODQ/view?usp=sharing Different solver with more iterations is under training right now