# draggan **Repository Path**: jiyilee-open/draggan ## Basic Information - **Project Name**: draggan - **Description**: DragGAN 是由 Google 的研究人员与 Max Planck 信息学研究所和麻省理工学院 CSAIL 一起开发的项目,是一个非常直观的图像编辑工具,用户只需要控制图像中的 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/draggan - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 10 - **Created**: 2023-06-26 - **Last Updated**: 2023-06-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

Xingang Pan · Ayush Tewari · Thomas Leimkühler · Lingjie Liu · Abhimitra Meka · Christian Theobalt

SIGGRAPH 2023 Conference Proceedings


PyTorch Twitter Paper PDF Project Page Huggingface

## Requirements Please follow the requirements of [https://github.com/NVlabs/stylegan3](https://github.com/NVlabs/stylegan3). ## Download pre-trained StyleGAN2 weights To download pre-trained weights, simply run: ```sh sh scripts/download_model.sh ``` If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`. Feel free to try other pretrained StyleGAN. ## Run DragGAN GUI To start the DragGAN GUI, simply run: ```sh sh scripts/gui.sh ``` This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI. You can run DragGAN Gradio demo as well: ```sh python visualizer_drag_gradio.py ``` ## Acknowledgement This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human). ## License The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/). However, most of this project are available under a separate license terms: all codes used or modified from [StyleGAN3](https://github.com/NVlabs/stylegan3) is under the [Nvidia Source Code License](https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt). Any form of use and derivative of this code must preserve the watermarking functionality showing "AI Generated". ## BibTeX ```bibtex @inproceedings{pan2023draggan, title={Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold}, author={Pan, Xingang and Tewari, Ayush, and Leimk{\"u}hler, Thomas and Liu, Lingjie and Meka, Abhimitra and Theobalt, Christian}, booktitle = {ACM SIGGRAPH 2023 Conference Proceedings}, year={2023} } ```