# draggan
**Repository Path**: jiyilee-open/draggan
## Basic Information
- **Project Name**: draggan
- **Description**: DragGAN 是由 Google 的研究人员与 Max Planck 信息学研究所和麻省理工学院 CSAIL 一起开发的项目,是一个非常直观的图像编辑工具,用户只需要控制图像中的
- **Primary Language**: Python
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: https://www.oschina.net/p/draggan
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 10
- **Created**: 2023-06-26
- **Last Updated**: 2023-06-26
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold
Xingang Pan
·
Ayush Tewari
·
Thomas Leimkühler
·
Lingjie Liu
·
Abhimitra Meka
·
Christian Theobalt
SIGGRAPH 2023 Conference Proceedings
## Requirements
Please follow the requirements of [https://github.com/NVlabs/stylegan3](https://github.com/NVlabs/stylegan3).
## Download pre-trained StyleGAN2 weights
To download pre-trained weights, simply run:
```sh
sh scripts/download_model.sh
```
If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`.
Feel free to try other pretrained StyleGAN.
## Run DragGAN GUI
To start the DragGAN GUI, simply run:
```sh
sh scripts/gui.sh
```
This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI.
You can run DragGAN Gradio demo as well:
```sh
python visualizer_drag_gradio.py
```
## Acknowledgement
This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human).
## License
The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/).
However, most of this project are available under a separate license terms: all codes used or modified from [StyleGAN3](https://github.com/NVlabs/stylegan3) is under the [Nvidia Source Code License](https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt).
Any form of use and derivative of this code must preserve the watermarking functionality showing "AI Generated".
## BibTeX
```bibtex
@inproceedings{pan2023draggan,
title={Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold},
author={Pan, Xingang and Tewari, Ayush, and Leimk{\"u}hler, Thomas and Liu, Lingjie and Meka, Abhimitra and Theobalt, Christian},
booktitle = {ACM SIGGRAPH 2023 Conference Proceedings},
year={2023}
}
```