# pix2pix-tensorflow **Repository Path**: ke_zhong_jie/pix2pix-tensorflow ## Basic Information - **Project Name**: pix2pix-tensorflow - **Description**: TensorFlow implementation of "Image-to-Image Translation Using Conditional Adversarial Networks". - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-01 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # pix2pix-tensorflow TensorFlow implementation of [Image-to-Image Translation Using Conditional Adversarial Networks](https://arxiv.org/pdf/1611.07004v1.pdf) that learns a mapping from input images to output images. Here are some results generated by the authors of paper: ## Setup ### Prerequisites - Linux - Python with numpy - NVIDIA GPU + CUDA 8.0 + CuDNNv5.1 - TensorFlow 0.11 ### Getting Started - Clone this repo: ```bash git clone git@github.com:yenchenlin/pix2pix-tensorflow.git cd pix2pix-tensorflow ``` - Download the dataset (script borrowed from [torch code](https://github.com/phillipi/pix2pix/blob/master/datasets/download_dataset.sh)): ```bash bash ./download_dataset.sh facades ``` - Train the model ```bash python main.py --phase train ``` - Test the model: ```bash python main.py --phase test ``` ## Results Here is the results generated from this implementation: - Facades: More results on other datasets coming soon! **Note**: To avoid the fast convergence of D (discriminator) network, G (generator) network is updated twice for each D network update, which differs from original paper but same as [DCGAN-tensorflow](https://github.com/carpedm20/DCGAN-tensorflow), which this project based on. ## Train Code currently supports [CMP Facades](http://cmp.felk.cvut.cz/~tylecr1/facade/) dataset. To reproduce results presented above, it takes 200 epochs of training. Exact computing time depends on own hardware conditions. ## Test Test the model on validation set of [CMP Facades](http://cmp.felk.cvut.cz/~tylecr1/facade/) dataset. It will generate synthesized images provided corresponding labels under directory `./test`. ## Acknowledgments Code borrows heavily from [pix2pix](https://github.com/phillipi/pix2pix) and [DCGAN-tensorflow](https://github.com/carpedm20/DCGAN-tensorflow/blob/master/model.py). Thanks for their excellent work! ## License MIT