# PDE-Net **Repository Path**: key_rongji/PDE-Net ## Basic Information - **Project Name**: PDE-Net - **Description**: 深度学习求解偏微分方程 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-12-26 - **Last Updated**: 2023-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PDE-Net & PDE-Net 2.0 This repository is for the following two papers: - [PDE-Net](https://arxiv.org/abs/1710.09668): Learning PDEs from Data[(ICML 2018)](https://icml.cc/Conferences/2018) - [PDE-Net 2.0](https://arxiv.org/abs/1812.04426): Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network **Source code** can be found in another two branches of this repository: [PDE-Net](https://github.com/ZichaoLong/PDE-Net/tree/PDE-Net) & [PDE-Net-2.0](https://github.com/ZichaoLong/PDE-Net/tree/PDE-Net-2.0).
If you find these code useful for your research then please cite ``` @inproceedings{long2018pde, title={PDE-Net: Learning PDEs from Data}, author={Long, Zichao and Lu, Yiping and Ma, Xianzhong and Dong, Bin}, booktitle={International Conference on Machine Learning}, pages={3214--3222}, year={2018} } @article{long2019pde, title={PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network}, author={Long, Zichao and Lu, Yiping and Dong, Bin}, journal={Journal of Computational Physics}, pages={108925}, year={2019}, publisher={Elsevier} } ```