# gluon-cv **Repository Path**: liuhahahao/gluon-cv ## Basic Information - **Project Name**: gluon-cv - **Description**: GLUONCV是亚马逊推出的深度学习库,提供许多图像任务的论文复现即过,提供许多数据读取,模型构建的接口,以及调参经验 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-07-01 - **Last Updated**: 2022-04-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Gluon CV Toolkit [![Build Status](http://ci.mxnet.io/buildStatus/icon?job=gluon-cv%2Fmaster)](http://ci.mxnet.io/job/gluon-cv/job/master/) [![GitHub license](docs/_static/apache2.svg)](./LICENSE) [![Code Coverage](http://gluon-cv.mxnet.io/coverage.svg?)](http://gluon-cv.mxnet.io/coverage.svg) [![PyPI](https://img.shields.io/pypi/v/gluoncv.svg)](https://pypi.python.org/pypi/gluoncv) [![PyPI Pre-release](https://img.shields.io/badge/pypi--prerelease-v0.8.0-ff69b4.svg)](https://pypi.org/project/gluoncv/#history) [![Downloads](http://pepy.tech/badge/gluoncv)](http://pepy.tech/project/gluoncv) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/semantic-segmentation-on-ade20k)](https://paperswithcode.com/sota/semantic-segmentation-on-ade20k?p=resnest-split-attention-networks) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=resnest-split-attention-networks) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/instance-segmentation-on-coco)](https://paperswithcode.com/sota/instance-segmentation-on-coco?p=resnest-split-attention-networks) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/panoptic-segmentation-on-coco-panoptic)](https://paperswithcode.com/sota/panoptic-segmentation-on-coco-panoptic?p=resnest-split-attention-networks) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/resnest-split-attention-networks/image-classification-on-imagenet)](https://paperswithcode.com/sota/image-classification-on-imagenet?p=resnest-split-attention-networks) | [Installation](https://gluon-cv.mxnet.io/install.html) | [Documentation](https://gluon-cv.mxnet.io) | [Tutorials](https://gluon-cv.mxnet.io/tutorials/index.html) | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in computer vision. It is designed for engineers, researchers, and students to fast prototype products and research ideas based on these models. This toolkit offers four main features: 1. Training scripts to reproduce SOTA results reported in research papers 2. A large number of pre-trained models 3. Carefully designed APIs that greatly reduce the implementation complexity 4. Community supports # Demo

Check the HD video at [Youtube](https://www.youtube.com/watch?v=nfpouVAzXt0) or [Bilibili](https://www.bilibili.com/video/av55619231). # Supported Applications | Application | Illustration | Available Models | |:-----------------------:|:---:|:---:| | [Image Classification:](https://gluon-cv.mxnet.io/model_zoo/classification.html)
recognize an object in an image. | classification | 50+ models, including
ResNet, MobileNet,
DenseNet, VGG, ... | | [Object Detection:](https://gluon-cv.mxnet.io/model_zoo/detection.html)
detect multiple objects with their
bounding boxes in an image. | detection | Faster RCNN, SSD, Yolo-v3 | | [Semantic Segmentation:](https://gluon-cv.mxnet.io/model_zoo/segmentation.html#semantic-segmentation)
associate each pixel of an image
with a categorical label. | semantic | FCN, PSP, ICNet, DeepLab-v3, DeepLab-v3+, DANet, FastSCNN | | [Instance Segmentation:](https://gluon-cv.mxnet.io/model_zoo/segmentation.html#instance-segmentation)
detect objects and associate
each pixel inside object area with an
instance label. | instance | Mask RCNN| | [Pose Estimation:](https://gluon-cv.mxnet.io/model_zoo/pose.html)
detect human pose
from images. | pose | Simple Pose| | [Video Action Recognition:](https://gluon-cv.mxnet.io/model_zoo/action_recognition.html)
recognize human actions
in a video. | action_recognition | TSN, C3D, I3D, P3D, R3D, R2+1D, Non-local, SlowFast | | [GAN:](https://github.com/dmlc/gluon-cv/tree/master/scripts/gan)
generate visually deceptive images | lsun | WGAN, CycleGAN | | [Person Re-ID:](https://github.com/dmlc/gluon-cv/tree/master/scripts/re-id/baseline)
re-identify pedestrians across scenes | re-id |Market1501 baseline | # Installation GluonCV supports Python 2.7/3.5 or later. The easiest way to install is via pip. ## Stable Release The following commands install the stable version of GluonCV and MXNet: ```bash pip install gluoncv --upgrade pip install -U --pre mxnet -f https://dist.mxnet.io/python/mkl # if cuda 10.1 is installed pip install -U --pre mxnet -f https://dist.mxnet.io/python/cu100mkl ``` **The latest stable version of GluonCV is 0.7 and depends on mxnet >= 1.4.0** ## Nightly Release You may get access to latest features and bug fixes with the following commands which install the nightly build of GluonCV and MXNet: ```bash pip install gluoncv --pre --upgrade pip install -U --pre mxnet -f https://dist.mxnet.io/python/mkl # if cuda 10.1 is installed pip install -U --pre mxnet -f https://dist.mxnet.io/python/cu100mkl ``` There are multiple versions of MXNet pre-built package available. Please refer to [mxnet packages](https://gluon-crash-course.mxnet.io/mxnet_packages.html) if you need more details about MXNet versions. # Docs 📖 GluonCV documentation is available at [our website](https://gluon-cv.mxnet.io/index.html). # Examples All tutorials are available at [our website](https://gluon-cv.mxnet.io/index.html)! - [Image Classification](http://gluon-cv.mxnet.io/build/examples_classification/index.html) - [Object Detection](http://gluon-cv.mxnet.io/build/examples_detection/index.html) - [Semantic Segmentation](http://gluon-cv.mxnet.io/build/examples_segmentation/index.html) - [Instance Segmentation](http://gluon-cv.mxnet.io/build/examples_instance/index.html) - [Video Action Recognition](https://gluon-cv.mxnet.io/build/examples_action_recognition/index.html) - [Generative Adversarial Network](https://github.com/dmlc/gluon-cv/tree/master/scripts/gan) - [Person Re-identification](https://github.com/dmlc/gluon-cv/tree/master/scripts/re-id/) # Resources Check out how to use GluonCV for your own research or projects. - For background knowledge of deep learning or CV, please refer to the open source book [*Dive into Deep Learning*](http://diveintodeeplearning.org/). If you are new to Gluon, please check out [our 60-minute crash course](http://gluon-crash-course.mxnet.io/). - For getting started quickly, refer to notebook runnable examples at [Examples](https://gluon-cv.mxnet.io/build/examples_classification/index.html). - For advanced examples, check out our [Scripts](http://gluon-cv.mxnet.io/master/scripts/index.html). - For experienced users, check out our [API Notes](https://gluon-cv.mxnet.io/api/data.datasets.html#). # Citation If you feel our code or models helps in your research, kindly cite our papers: ``` @article{gluoncvnlp2020, author = {Jian Guo and He He and Tong He and Leonard Lausen and Mu Li and Haibin Lin and Xingjian Shi and Chenguang Wang and Junyuan Xie and Sheng Zha and Aston Zhang and Hang Zhang and Zhi Zhang and Zhongyue Zhang and Shuai Zheng and Yi Zhu}, title = {GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {23}, pages = {1-7}, url = {http://jmlr.org/papers/v21/19-429.html} } @article{he2018bag, title={Bag of Tricks for Image Classification with Convolutional Neural Networks}, author={He, Tong and Zhang, Zhi and Zhang, Hang and Zhang, Zhongyue and Xie, Junyuan and Li, Mu}, journal={arXiv preprint arXiv:1812.01187}, year={2018} } @article{zhang2019bag, title={Bag of Freebies for Training Object Detection Neural Networks}, author={Zhang, Zhi and He, Tong and Zhang, Hang and Zhang, Zhongyue and Xie, Junyuan and Li, Mu}, journal={arXiv preprint arXiv:1902.04103}, year={2019} } @article{zhang2020resnest, title={ResNeSt: Split-Attention Networks}, author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander}, journal={arXiv preprint arXiv:2004.08955}, year={2020} } ```