# CVLab **Repository Path**: liuyinwei/CVLab ## Basic Information - **Project Name**: CVLab - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-07-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Computer Vision Lab =================== 每位同学的主要任务是:阅读论文和完成老师安排的实验任务。 Experimental Report ------------------- 实验任务以实验代码和实验报告的形式提交。实验报告的规范详见[这里](实验报告规范.docx)。为了节省彼此的时间,请大家务必认真阅读,并严格遵守。 实验相关的资料以码云项目组织,并使用GitKraken管理。请从[这里](https://gitee.com/xxlimg/MRIRecon)Fork项目模板。并将我的码云账号(mordekai\@qq.com)添加为你的项目管理员。 Reading Report -------------- 每周6晚20:00召开学术例会。每位做报告的同学需要提前1天预约,并上传报告的相关资料(论文、PPT、源码等)至服务器,以便后续主题查询! 上传地址:/共享给我的/研究主题及相关内容/ 服务器账号和密码详见群公告。 **Report Scheduling** 1. *2019/3/01*, 张晟源:*Deep Image Prior Zero-Shot Super-Resolution using Deep Internal Learning*, **CVPR**, 2018 2. *2019/3/08*, 刘银伟:*Fast and Accurate Image Upscaling with Super-Resolution Forests Naive Bayes Super-Resolution Forest*, **CVPR**, 3. *2019/3/15*, 楼鑫杰:*A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction*, **TMI**, 2017, [code](https://github.com/js3611/Deep-MRI-Reconstruction) 4. *2019/7/13*, 楼鑫杰:*Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks*, **TBME**, 2018. 5. *2019/7/20*, 刘银伟:*Deep Residual Learning for Compressed Sensing MRI*, **ISBI**, 2017. 6. *2019/7/27*, 张晟源:*Acceleration of MR Parameter Mapping Using Annihilating Filter-Based Low Rank Hankel Matrix (ALOHA)*, **Magnetic Resonance in Medicine**, 2016, [code](https://bispl.weebly.com/aloha-for-mr-recon.html). 7. *2019/8/03*, 郑希雨:*A New Detail-Preserving Regularization Scheme*, **SIAM Journal on Imaging Sciences**, 2014, [code](https://www.math.ucla.edu/~wotaoyin/papers/tgv_shearlet.html). 8. *2019/8/10*, 楼鑫杰:*Decoupled Algorithm for MRI Reconstruction Using Nonlocal Block Matching Model: BM3D-MRI*, **Journal of Mathematical Imaging and Vision**, 2016, [code](https://web.itu.edu.tr/eksioglue/pubs/BM3D_MRI.htm). 9. *2019/8/17*, 刘银伟:*Feedback Network for Image Super-Resolution*, **CVPR**, 2019. 10. *2019/8/24*, 张晟源:*Natural and Realistic Single Image Super-Resolution with Explicit Natural Manifold Discrimination*, **CVPR**, 2019. 11. *2019/8/31*, 郑希雨:*Learning Parallax Attention for Stereo Image Super-Resolution*, **CVPR**, 2019. 12. *2019/9/07*, 楼鑫杰:*Towards Real Scene Super-Resolution with Raw Images*, **CVPR**, 2019.