# forex-prediction **Repository Path**: liwanwan/forex-prediction ## Basic Information - **Project Name**: forex-prediction - **Description**: Machine Learning with Matlab 2018. Final project on Timeseries Prediction with LSTM / RNN. - **Primary Language**: Matlab - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 7 - **Forks**: 0 - **Created**: 2020-03-18 - **Last Updated**: 2022-05-25 ## Categories & Tags **Categories**: ai **Tags**: None ## README # ml_proj Machine Learning with Matlab 2018. Final project on Timeseries Prediction with LSTM / RNN. 0. Project directory structure: ml_proj/ +-- data % Contains EURUSD dataset +-- scripts % MATLAB Scripts | +-- data % data preprocessing scripts | +-- measure % RMSE and MAPE implementation | +-- arimaMain.m % Run ARIMA | +-- varmMain.m % Run VAR | +-- lstmUnivariateMain.m % Run LSTM univariate | +-- lstmMultivariateMain.m % Run LSTM multivariate | +-- config.m % Configuration +-- reports % Report (report.pdf) +-- saved_models % Trained models 1. Installation In order to run the project, the following Matlab Toolboxes must be installed: 1. Statistics and Machine Learning Toolbox 2. Econometrics Toolbox 3. Deep Learning Toolbox 2. Running the Project - Add ml_proj and its subfolders into path - Modify the configuration if necessary. By default, it only verifies the saved models in full dataset. Set cfg.execMode to "train" to train the model again. - Run the respective .m file