# MobileFaceNet_Pytorch **Repository Path**: liyingjiao/MobileFaceNet_Pytorch ## Basic Information - **Project Name**: MobileFaceNet_Pytorch - **Description**: MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-10-04 - **Last Updated**: 2021-05-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MobileFaceNet ## Introduction * This repository is the pytorch implement of the paper: [MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices](https://arxiv.org/pdf/1804.07573.pdf) and I almost follow the implement details of the paper. * I train the model on CASIA-WebFace dataset, and evaluate on LFW dataset. ## Requirements * Python 3.5 * pytorch 0.4+ * GPU menory ## Usage ### Part 1: Preprocessing * All images of dataset are preprocessed following the [SphereFace](https://github.com/wy1iu/sphereface) and you can download the aligned images at [Align-CASIA-WebFace@BaiduDrive](https://pan.baidu.com/s/1k3Cel2wSHQxHO9NkNi3rkg) and [Align-LFW@BaiduDrive](https://pan.baidu.com/s/1r6BQxzlFza8FM8Z8C_OCBg). ### Part 2: Train 1. Change the **CAISIA_DATA_DIR** and **LFW_DATA_DAR** in `config.py` to your data path. 2. Train the mobilefacenet model. **Note:** The default settings set the batch size of 512, use 2 gpus and train the model on 70 epochs. You can change the settings in `config.py` ``` python3 train.py ``` ### Part 3: Test 1. Test the model on LFW. **Note:** I have tested `lfw_eval.py` on the caffe model at [SphereFace](https://github.com/wy1iu/sphereface), it gets the same result. ``` python3 lfw_eval.py --resume --feature_save_dir ``` * `--resume:` path of saved model * `--feature_save_dir:` path to save the extracted features (must be .mat file) ## Results * You can just run the `lfw_eval.py` to get the result, the accuracy on LFW like this: | Fold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AVE(ours) | Paper(112x96) | | ------ |------|------|------|------|------|------|------|------|------|------| ------ | ------ | | ACC | 99.00 | 99.00 | 99.00 | 98.67 | 99.33 | 99.67 | 99.17 | 99.50 | 100.00 | 99.67| **99.30** | 99.18 | ## Reference resources * [arcface-pytorch](https://github.com/ronghuaiyang/arcface-pytorch) * [SphereFace](https://github.com/wy1iu/sphereface) * [Insightface](https://github.com/deepinsight/insightface)