diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md index 24883cfa414cd367d7a5d15d2e8c653f45ab6067..a276d3a0d202a75af34ec38a8e2dd0a1b9adab5f 100644 --- a/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md @@ -1,368 +1,204 @@ -# Lite算子支持 +# MindSpore Lite支持的硬件后端列表 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite.md) -MindSpore Lite支持不同硬件后端的算子列表: - -| 操作名
  | CPU
FP16 | CPU
FP32 | CPU
Int32 | CPU
Int8 | CPU
UInt8 | CPU
Bool | Mali/Adreno GPU
FP16 | Mali/Adreno GPU
FP32 | Mali/Adreno GPU
Int32 | Mali/Adreno GPU
Int8 | 麒麟NPU
FP16 | 英伟达GPU
FP16 | 昇腾
FP16 | -| ----------------------------------- | :----------: | :----------: | ------------- | :----------: | :-----------: | ------------ | :----------------------: | :----------------------: | ------------------------- | ------------------------ | :--------------------: | :----------------: | :----------------------: | -| Abs | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| AbsGrad | | ✅ | | | | | | | | | | | | -| Activation | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| ActivationGrad | ✅ | ✅ | | | | | | | | | | | | -| Adam | | ✅ | | | | | | | | | | | | -| AddFusion | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | ✅ | -| AdderFusion | | ✅ | | | | | | | | | | | | -| AddGrad | | ✅ | | | | | | | | | | | | -| AddN | ✅ | ✅ | | | | | | | | | | | | -| Affine | | ✅ | | | | | | | | | | | ✅ | -| All | | ✅ | | | | | | | | | | ✅ | | -| AllGather | | ✅ | | | | | | | | | | ✅ | | -| ApplyMomentum | | ✅ | | | | | | | | | | | ✅ | -| Assert | ✅ | ✅ | | | | ✅ | | | | | | | | -| Assign | | ✅ | | | | | | | | | | | ✅ | -| ArgmaxFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| ArgminFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | | ✅ | -| AvgPoolFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| AvgPoolGrad | ✅ | ✅ | | | | | | | | | | | | -| BatchNorm | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | | ✅ | -| BatchNormGrad | ✅ | ✅ | | | | | | | | | | | | -| BatchToSpace | | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | | | -| BatchToSpaceND | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | | | -| BiasAdd | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | ✅ | ✅ | -| BiasAddGrad | ✅ | ✅ | | | | | | | | | | | | -| BinaryCrossEntropy | | ✅ | | | | | | | | | | | ✅ | -| BinaryCrossEntropyGrad | | ✅ | | | | | | | | | | | | -| BroadcastTo | ✅ | ✅ | ✅ | | | ✅ | | | | | | | | -| Call | ✅ | ✅ | ✅ | | | ✅ | | | | | | | ✅ | -| Cast | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| Ceil | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| Clip | | ✅ | ✅ | | | | | | | | | | ✅ | -| Concat | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | -| ConstantOfShape | ✅ | ✅ | ✅ | | | | | | | | | | | -| Conv2DFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| Conv2DBackpropFilterFusion | ✅ | ✅ | | | | | | | | | | | | -| Conv2DBackpropInputFusion | ✅ | ✅ | | | | | | | | | | | | -| Conv2dTransposeFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| Cos | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| Crop | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | -| CropAndResize | | ✅ | | | | | | | | | ✅ | | | -| CumSum | | ✅ | ✅ | | | | | | | | | | ✅ | -| CustomExtractFeatures | | ✅ | | | | | | | | | | | | -| CustomNormalize | | ✅ | | | | | | | | | | | | -| CustomPredict | | ✅ | ✅ | | | | | | | | | | | -| DEConv2DGradFilter | | ✅ | | | | | | | | | | | | -| DepthToSpace | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | | | -| DetectionPostProcess | | ✅ | | ✅ | ✅ | | | | | | | | | -| DivFusion | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| DivGrad | | ✅ | | | | | | | | | | | | -| Dropout | ✅ | ✅ | | | | | | | | | | | ✅ | -| DropoutGrad | ✅ | ✅ | | | | | | | | | | | | -| DynamicQuant | | ✅ | | | | | | | | | | | | -| Eltwise | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| Elu | ✅ | ✅ | | | | | | | | | | | ✅ | -| Equal | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| EmbeddingLookupFusion | | ✅ | | | | | | | | | | | | -| Erf | ✅ | ✅ | | | | | | | | | | | ✅ | -| ExpFusion | ✅ | ✅ | | | | | ✅ | ✅ | | | | | ✅ | -| ExpandDims | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | -| Fill | ✅ | ✅ | ✅ | | | ✅ | ✅ | ✅ | | | | | ✅ | -| Flatten | ✅ | ✅ | ✅ | | | | | | | | | ✅ | ✅ | -| FlattenGrad | ✅ | ✅ | | | | | | | | | | | | -| Floor | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| FloorDiv | ✅ | ✅ | ✅ | | | | ✅ | ✅ | | | ✅ | | | -| FloorMod | ✅ | ✅ | ✅ | | | | ✅ | ✅ | | | ✅ | | | -| FullConnection | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| FusedBatchNorm | ✅ | ✅ | | ✅ | ✅ | | | | | | ✅ | | ✅ | -| GatherNd | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ | -| Gather | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | -| GatherD | ✅ | ✅ | ✅ | | | ✅ | | | | | | | ✅ | -| GLU | | ✅ | | | | | | | | | | | | -| Greater | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| GreaterEqual | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| GroupNormFusion | | ✅ | | | | | | | | | | | | -| GRU | ✅ | ✅ | | | | | | | | | | | | -| HashtableLookup | | ✅ | ✅ | | | | | | | | | | | -| InstanceNorm | ✅ | ✅ | | | | | | | | | ✅ | | ✅ | -| InvertPermutation | ✅ | ✅ | ✅ | | | | | | | | | | | -| IsFinite | | ✅ | | | | | | | | | | | ✅ | -| L2NormalizeFusion | | ✅ | | ✅ | ✅ | | | | | | | | | -| LayerNormFusion | ✅ | ✅ | | ✅ | | | ✅ | ✅ | | | | | ✅ | -| LayerNormGrad | ✅ | ✅ | | | | | | | | | | | | -| LeakyReLU | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| Less | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| LessEqual | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| LRN | | ✅ | | | | | | | | | | | ✅ | -| Log | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| Log1p | | ✅ | | | | | | | | | | | ✅ | -| LogGrad | ✅ | ✅ | | | | | | | | | | | | -| LogicalAnd | ✅ | ✅ | ✅ | | | ✅ | ✅ | ✅ | | | ✅ | | | -| LogicalNot | ✅ | ✅ | | ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | | | -| LogicalOr | ✅ | ✅ | | | | ✅ | ✅ | ✅ | | | ✅ | | | -| LogSoftmax | ✅ | ✅ | | | | | | | | | | | ✅ | -| LshProjection | | ✅ | | | | | | | | | | | | -| LSTM | ✅ | ✅ | | | | | | | | | | | | -| LSTMGrad | | ✅ | | | | | | | | | | | | -| LSTMGradData | | ✅ | | | | | | | | | | | | -| LSTMGradWeight | | ✅ | | | | | | | | | | | | -| MatMulFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| Maximum | ✅ | ✅ | ✅ | | | | ✅ | ✅ | | | ✅ | | ✅ | -| MaximumGrad | ✅ | ✅ | | | | | | | | | | | | -| MaxPoolFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| MaxPoolGrad | ✅ | ✅ | | | | | | | | | | | | -| Merge | ✅ | ✅ | | | | | | | | | | | | -| Minimum | ✅ | ✅ | ✅ | | | | ✅ | ✅ | | | ✅ | | ✅ | -| MinimumGrad | ✅ | ✅ | | | | | | | | | | | | -| Mod | | ✅ | ✅ | | | | | | | | | | ✅ | -| MulFusion | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| MulGrad | | ✅ | | | | | | | | | | | | -| Neg | ✅ | ✅ | ✅ | | | | ✅ | ✅ | | | ✅ | | ✅ | -| NegGrad | ✅ | ✅ | | | | | | | | | | | | -| NLLLoss | | ✅ | | | | | | | | | | | ✅ | -| NLLLossGrad | | ✅ | | | | | | | | | | | | -| NotEqual | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | | -| NonMaxSupppression | | ✅ | | | | | | | | | | | ✅ | -| NonZero | | | | | | ✅ | | | | | | | ✅ | -| OneHot | ✅ | ✅ | ✅ | | | | ✅ | ✅ | ✅ | | | | | -| OnesLike | ✅ | ✅ | ✅ | | | | | | | | | ✅ | ✅ | -| PadFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| PartialFusion | ✅ | ✅ | ✅ | | | ✅ | | | | | | | | -| PowFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | ✅ | ✅ | -| PowerGrad | | ✅ | | | | | | | | | | | | -| PriorBox | | ✅ | | ✅ | ✅ | | | | | | | | ✅ | -| PReLUFusion | ✅ | ✅ | | | | | ✅ | ✅ | | | | | ✅ | -| QuantDTypeCast | ✅ | ✅ | | ✅ | ✅ | | | | | | | | | -| RaggedRange | ✅ | ✅ | ✅ | | | | | | | | | | | -| RandomNormal | ✅ | ✅ | | | | | | | | | | | | -| RandomStandardNormal | ✅ | ✅ | | | | | | | | | | | | -| Range | ✅ | ✅ | ✅ | | | | | | | | | | ✅ | -| Rank | ✅ | ✅ | | | | | | | | | | | | -| RealDiv | ✅ | ✅ | | | | | | | | | | | ✅ | -| Reciprocal | ✅ | ✅ | | ✅ | | | | | | | ✅ | | ✅ | -| ReduceFusion | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| ReduceScatter | | ✅ | | | | | | | | | | ✅ | | -| Reshape | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | -| Resize | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | | -| ResizeGrad | ✅ | ✅ | | | | | | | | | | | | -| ReverseV2 | | ✅ | ✅ | | | | | | | | | | | -| ReverseSequence | | ✅ | | | | | | | | | | | ✅ | -| ROIPooling | | ✅ | | | | | | | | | | | ✅ | -| Round | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| Rsqrt | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | | -| RsqrtGrad | | ✅ | | | | | | | | | | | ✅ | -| Select | | ✅ | | | | ✅ | | | | | | | | -| Selu | | | | | | | | | | | | | | -| ScaleFusion | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| ScatterNd | ✅ | ✅ | ✅ | | | | | | | | | | ✅ | -| ScatterNdUpdate | ✅ | ✅ | ✅ | | | | | | | | | | | -| SGD | | ✅ | | | | | | | | | | | ✅ | -| Shape | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ | -| SigmoidCroosEntropyWithLogits | | ✅ | | | | | | | | | | | ✅ | -| SigmoidCroosEntropyWithLogitsGrad | | ✅ | | | | | | | | | | | ✅ | -| Sin | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| Size | ✅ | ✅ | ✅ | | | | | | | | | | ✅ | -| SliceFusion | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| SkipGram | | ✅ | | | | | | | | | | | | -| SmoothL1Loss | | ✅ | | | | | | | | | | | ✅ | -| SmoothL1LossGrad | | ✅ | | | | | | | | | | | ✅ | -| Softmax | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| SoftmaxGrad | | ✅ | | | | | | | | | | | | -| Softplus | ✅ | ✅ | | | | | | | | | | | ✅ | -| SpaceToBatch | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | | | -| SpaceToBatchND | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | | | | -| SpaceToDepth | ✅ | ✅ | | | | | ✅ | ✅ | | | | | ✅ | -| SparseToDense | ✅ | ✅ | ✅ | | | | ✅ | ✅ | ✅ | | | | | -| SparseSoftmaxCrossEntropyWithLogits | | ✅ | | | | | | | | | | | ✅ | -| Splice | ✅ | ✅ | | | | | | | | | | | | -| Split | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| SplitWithOverlap | ✅ | ✅ | | | | | | | | | | | | -| Sqrt | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| SqrtGrad | | ✅ | | | | | | | | | | | ✅ | -| Square | ✅ | ✅ | | ✅ | ✅ | | ✅ | ✅ | | | ✅ | | ✅ | -| SquaredDifference | ✅ | ✅ | | | | | ✅ | ✅ | | | | | | -| Squeeze | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | | -| StridedSlice | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| StridedSliceGrad | ✅ | ✅ | | | | | | | | | | | | -| Stack | ✅ | ✅ | ✅ | | | | ✅ | ✅ | | | | | ✅ | -| SubFusion | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| SubGrad | | ✅ | | | | | | | | | | | | -| Switch | ✅ | ✅ | ✅ | | | ✅ | | | | | | | | -| SwitchLayer | ✅ | ✅ | ✅ | | | ✅ | | | | | | | | -| TensorListFromTensor | ✅ | ✅ | ✅ | | | | | | | | | | | -| TensorListGetItem | ✅ | ✅ | ✅ | | | | | | | | | | | -| TensorListReserve | ✅ | ✅ | ✅ | | | | | | | | | | | -| TensorListSetItem | ✅ | ✅ | ✅ | | | | | | | | | | | -| TensorListStack | ✅ | ✅ | ✅ | | | | | | | | | | | -| TensorScatterAdd | | ✅ | ✅ | | | | | | | | | | | -| TileFusion | ✅ | ✅ | ✅ | | | ✅ | | | | | ✅ | | ✅ | -| TopKFusion | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | ✅ | -| Transpose | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | | | ✅ | ✅ | ✅ | -| UniformReal | | ✅ | ✅ | | | | | | | | | | | -| Unique | ✅ | ✅ | ✅ | | | | | | | | | | | -| UnsortedSegmentSum | ✅ | ✅ | ✅ | | | | | | | | | | | -| Unsqueeze | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ✅ | | -| Unstack | ✅ | ✅ | ✅ | | | | | | | | | | | -| Where | ✅ | ✅ | ✅ | | | ✅ | | | | | | | | -| ZerosLike | ✅ | ✅ | ✅ | | | | | | | | | | | - -MindSpore Lite转换工具支持第三方框架的算子列表: - -| 操作名
  | 支持的TensorFlow Lite算子 | 支持的Caffe算子 | 支持的Onnx算子 | 支持的TensorFlow算子 | -| ------------------------------------ | ------------------------------------------------------------ | ------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -| Abs | Abs | | Abs | Abs | -| Activation | Activation, ReLU, ReLU6, PReLU,
LeakyReLU, Tanh, HardSwish, Logistic | ReLU, ReLU6, Sigmoid, TanH, Elu | Relu, LeakyRelu, PRelu, Elu, Tanh, Sigmoid, HardSigmoid, Softplus,Gelu | Activation, Elu, Relu, Relu6, Sigmoid, Tanh, Selu, LeakyRelu, Softplus | -| Adam | Adam | | | Adam | -| AddFusion | Add | | Add, Int8Add | Add, AddV2 | -| AdderFusion | | | adder_f | | -| AddN | AddN | | | | -| All | All | | | All | -| ApplyMomentum | ApplyMomentum | | | ApplyMomentum | -| Assert | | | | Assert | -| Assign | Assign | | | Assign | -| ArgmaxFusion | Argmax | ArgMax | ArgMax | ArgMax | -| ArgminFusion | Argmin | | ArgMin | ArgMin | -| AvgPoolFusion | MeanPooling | Pooling | AveragePool,
GlobalAveragePool,
Int8AveragePool | AvgPool | -| BatchNorm | | BatchNorm | BatchNormalization | | -| BatchToSpace | BatchToSpace | | | BatchToSpace | -| BatchToSpaceND | BatchToSpaceND | | | BatchToSpaceND | -| BiasAdd | | | BiasAdd | BiasAdd | -| BinaryCrossEntropy | BinaryCrossEntropy | | | BinaryCrossEntropy | -| BroadcastTo | BroadcastTo | | Expand | BroadcastTo | -| Cast | Cast,
QUANTIZE,
DEQUANTIZE | | Cast | Cast | -| Ceil | Ceil | | Ceil | Ceil | -| Clip | Clip | | Clip | Clip | -| Concat | Concat | Concat | Concat | ConcatV2 | -| ConstantOfShape | | | ConstantOfShape | | -| Conv2DFusion | Conv2D | Convolution | Conv, Int8Conv,
ConvRelu,
Int8ConvRelu | Conv2D | -| Conv2dTransposeFusion | DeConv2D | Deconvolution | ConvTranspose | Conv2DBackpropInput | -| Cos | Cos | | Cos | Cos | -| Crop | | Crop | | | -| CropAndResize | | | | CropAndResize | -| CumSum | | | CumSum | Cumsum | -| CustomExtractFeatures | ExtractFeatures | | | | -| CustomNormalize | Normalize | | | | -| CustomPredict | Predict | | | | -| DepthToSpace | DepthToSpace | | DepthToSpace | DepthToSpace | -| DetectionPostProcess | Custom | | | | -| DivFusion | Div, RealDiv | | Div | Div, RealDiv | -| Dropout | Dropout | | Dropout | Dropout | -| DynamicQuant | | | DynamicQuantizeLinear | | -| Eltwise | | Eltwise | Sum, Max[3] | | -| Elu | | ELU | Elu,
NonMaxSuppression | NonMaxSuppressionV3 | -| Equal | Equal | | Equal | Equal | -| Erf | Erf | | Erf | Erf | -| ExpFusion | Exp | Exp | Exp | Exp | -| ExpandDims | ExpandDims | | | ExpandDims | -| Fill | Fill | | | Fill | -| Flatten | | Flatten | | | -| Floor | flOOR | | Floor | Floor | -| FloorDiv | FloorDiv | | | FloorDiv | -| FloorMod | FloorMod | | | FloorMod | -| FullConnection | FullyConnected | InnerProduct | | | -| FusedBatchNorm | FusedBatchNorm | | | FusedBatchNorm,
FusedBatchNormV3 | -| GatherNd | GatherND | | GatherND | GatherNd | -| Gather | Gather | | Gather | GatherV2 | -| Greater | Greater | | Greater | Greater | -| GreaterEqual | GreaterEqual | | GreaterOrEqual | GreaterEqual | -| HashtableLookup | HashtableLookup | | | | -| InstanceNorm | InstanceNorm | | InstanceNormalization | | -| InvertPermutation | | | | InvertPermutation | -| IsFinite | IsFinite | | | IsFinite | -| LeakyReLU | LeakyRelu | | LeakyRelu | LeakyRelu | -| Less | Less | | Less | Less | -| LessEqual | LessEqual | | | LessEqual | -| LRN | LocalResponseNorm | | Lrn, LRN | | -| Log | Log | | Log | Log | -| Log1p | Log1p | | | Log1p | -| LogicalAnd | LogicalAnd | | And | LogicalAnd | -| LogicalNot | LogicalNot | | Not | LogicalNot | -| LogicalOr | LogicalOr | | Or | LogicalOr | -| LogSoftmax | LogSoftmax | | LogSoftmax | | -| LshProjection | LshProjection | | | | -| LSTM | | | LSTM | | -| MatMulFusion | BatchMatMul | | MatMul,
Gemm | MatMul,
BatchMatMul,
BatchMatMulV2 | -| Maximum | Maximum | | Max | Maximum | -| MaxPoolFusion | MaxPooling | Pooling | MaxPool,
GlobalMaxPool | MaxPool | -| Merge | | | | Merge | -| Minimum | Minimum | | Min | Minimum | -| MinimumGrad | | | | | -| Mod | Mod | | Mod | Mod | -| MulFusion | Mul | | Mul | Mul | -| MulGrad | | | | | -| Neg | Neg | | Neg | Neg | -| NotEqual | NotEqual | | | NotEqual | -| NonMaxSupppression | NonMaxSupppression | | NonMaxSupppression | NonMaxSupppression | -| NonZero | NonZero | | NonZero | NonZero | -| OneHot | OneHot | | OneHot | OneHot | -| OnesLike | OnesLike | | | OnesLike | -| PadFusion | Pad, MirrorPad, PadV2 | | Pad | MirrorPad, Pad, PadV2 | -| PowFusion | Pow | Power | Pow[2] | Pow | -| PReLUFusion | PRELU | PReLU | PRelu | | -| RaggedRange | | | | RaggedRange | -| RandomNormal | RandomNormal | | RandomNormal | RandomNormal | -| RandomStandardNormal | | | | RandomStandardNormal | -| Range | Range | | Range | Range | -| Rank | Rank | | | Rank | -| Reciprocal | | | Reciprocal | | -| ReduceFusion | Sum, Mean, ReduceMax, ReduceMin, ReduceProd | Reduction | ReduceMean, ReduceMax, ReduceMin, ReduceProd, ReduceSum, ReduceSumSquare, ReduceL2,ReduceL1,ReduceLogSum | Sum, Max, Min, Mean, Prod, All | -| Reshape | Reshape | Reshape | Reshape,
Flatten | Reshape | -| Resize | ResizeBilinear,
NearestNeighbor | Interp | Resize, Upsample | ResizeBilinear,
ResizeBicubic,
ResizeNearestNeighbor | -| ReverseV2 | reverse | | | ReverseV2 | -| ReverseSequence | ReverseSequence | | ReverseSequence | ReverseSequence | -| Round | Round | | Round | Round | -| Rsqrt | Rsqrt | | | Rsqrt | -| Select | | | | Select | -| Selu | | | | Selu | -| ScaleFusion | | Scale | | | -| ScatterNd | ScatterNd | | ScatterND | | -| ScatterNdUpdate | ScatterNdUpdate | | ScatterNdUpdate | | -| SGD | SGD | SGD | | SGD | -| Shape | Shape | | Shape | Shape | -| Sin | Sin | | Sin | Sin | -| Size | | | | Size | -| SliceFusion | Slice | Slice | Slice | Slice | -| SkipGram | SKipGram | | | | -| Softmax | Softmax | Softmax | Softmax | Softmax | -| Softplus | | | | Softplus | -| SpaceToBatch | SpaceToBatch | | | | -| SpaceToBatchND | SpaceToBatchND | | | SpaceToBatchND | -| SpaceToDepth | SpaceToDepth | | SpaceToDepth | | -| SparseToDense | SpareToDense | | | | -| Splice | | | Splice | | -| Split | Split, SplitV | | Split | Split, SplitV | -| Sqrt | Sqrt | | Sqrt | Sqrt | -| Square | Square | | | Square | -| SquaredDifference | SquaredDifference | | | SquaredDifference | -| Squeeze | Squeeze | | Squeeze | Squeeze | -| StridedSlice | StridedSlice | | Slice,
DynamicSlice | StridedSlice | -| Stack | Stack | | | Pack | -| SubFusion | Sub | | Sub | Sub | -| Switch | | | | Switch | -| TensorListFromTensor | | | | TensorListFromTensor | -| TensorListGetItem | | | | TensorListGetItem | -| TensorListReserve | | | | TensorListReserve | -| TensorListSetItem | | | | TensorListSetItem | -| TensorListStack | | | | TensorListStack | -| TensorScatterAdd | TensorScatterAdd | | | TensorScatterAdd | -| TileFusion | Tile | Tile | Tile | Tile | -| TopKFusion | TopKV2 | | TopK | TopKV2 | -| Transpose | Transpose | Permute | Transpose, Int8Transpose | Transpose | -| Unique | Unique | | | | -| UnsortedSegmentSum | | | | UnsortedSegmentSum | -| Unsqueeze | | | Unsqueeze | | -| Unstack | Unstack | | | | -| Where | Where | | NonZero, Where | Where | -| ZerosLike | ZerosLike | | | ZerosLike | -| 转换工具支持的其他算子[4] | | | Constant,
Atan, Asin, Tan,
Loop, Dropout, If, Identity,
Int8GivenIntTensorFill,
Int8GivenTensorFill,
Int8Quantize,
Int8Dequantize,
LpNormalization | Dropout, Enter,
Exit, If,
LinSpace,
LoopCond,
NextIteration,
StatelessIf,
StatelessWhile,
TensorArrayGatherV3,
TensorArrayReadV3,
TensorArrayScatterV3,
TensorArraySizeV3,
TensorArrayV3,
TensorArrayWriteV3,
While | - -[1] Clip:仅支持将clip(0, 6)转换为Relu6。 - -[2] Pow:仅支持指数为单个常数。 - -[3] Sum与Max:仅支持输入个数为2。 - -[4] [转换工具](https://www.mindspore.cn/lite/docs/zh-CN/master/converter/converter_tool.html)支持,但不需要具体实现的算子,一般这类算子在转化工具中被优化而消失,如被融合掉或者使用其他算子代替。 - -[5] 当前支持使用环境变量export KEEP_ORIGIN_DTYPE=1来保持数据类型为int64,当使用int32数据类型存在溢出时可以考虑使用该选项,但是目前仅为实验性选项,后续将移除。 - -[6] 目前MindSpore导出的MindIR中部分算子不支持,对应的MindSpore接口为ops.matmul、ops.dense、ops.max、ops.min。其中Max以及Min算子只在axis参数为None时不支持,其他场景支持。 +| 算子名称 | 算子功能 | CPU | NPU(麒麟) | GPU(Mali/Adreno) | +| ----------------------------------- | ------------------------------------------------------------ | --------------------------------------------------- | --------- | ----------------------- | +| Abs | 逐元素计算绝对值 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| AbsGrad | 计算绝对值函数的梯度 | FP32 | - | - | +| Activation | 激活函数 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| ActivationGrad | 计算特定激活函数的梯度 | FP16
FP32 | - | - | +| Adam | 执行Adam优化器的一次参数更新步骤 | FP32 | - | - | +| AddFusion | 逐元素计算加法 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32
Int8 | +| AdderFusion | 逐元素加法 | FP32 | - | - | +| AddGrad | 计算加法操作的梯度 | FP32 | - | - | +| AddN | 对N个相同形状和数据类型的输入张量进行逐元素相加 | FP16
FP32 | - | - | +| Affine | 对输入张量执行仿射变换 | FP32 | - | - | +| All | 判断张量中所有元素在指定维度上是否都为True(非零) | FP32 | - | - | +| AllGather | 分布式集合通信操作 | FP32 | - | - | +| ApplyMomentum | 执行带动量的随机梯度下降 的一次参数更新步骤 | FP32 | - | - | +| Assert | 断言 | FP16
FP32
Bool | - | - | +| Assign | 将一个值赋值给一个变量 | FP32 | - | - | +| ArgmaxFusion | 求某一维度最大值 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| ArgminFusion | 求某一维度最小值 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| AvgPoolFusion | 平均池化 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| AvgPoolGrad | 计算平均池化层的梯度 | FP16
FP32 | - | - | +| BatchNorm | 批量归一化 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| BatchNormGrad | 计算批量归一化层的梯度 | FP16
FP32 | - | - | +| BatchToSpace | 空间到批次变换的逆操作 | FP32
Int8
UInt8 | - | FP16
FP32 | +| BatchToSpaceND | BatchToSpace的ND通用版本 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| BiasAdd | 将偏置向量添加到输入张量 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| BiasAddGrad | 计算 BiasAdd操作的梯度 | FP16
FP32 | - | - | +| BinaryCrossEntropy | 计算二元交叉熵损失 | FP32 | - | - | +| BinaryCrossEntropyGrad | 计算二元交叉熵损失函数的梯度 | FP32 | - | - | +| BroadcastTo | 扩维 | FP16
FP32
Int32
Bool | - | - | +| Call | 调用一个子计算图或函数 | FP16
FP32
Int32
Bool | - | - | +| Cast | 数据类型转换 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32 | +| Ceil | 向上取整 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Clip | 限制元素范围 | FP32
Int32 | - | - | +| Concat | 拼接张量 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32
Int32 | +| ConstantOfShape | 生成一个与输入形状相同的张量,并用指定常量填充 | FP16
FP32
Int32 | - | - | +| Conv2DFusion | 2D卷积 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Conv2DBackpropFilterFusion | 计算普通卷积操作对卷积核的梯度 | FP16
FP32 | - | - | +| Conv2DBackpropInputFusion | 计算普通卷积操作对输入数据的梯度 | FP16
FP32 | - | - | +| Conv2dTransposeFusion | 执行转置卷积运算 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Cos | 逐元素计算余弦 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Crop | 从输入图像或特征图中裁剪出一个指定区域 | FP16
FP32
Int32
Int8
UInt8 | - | - | +| CropAndResize | 从输入图像中根据一组边界框裁剪出区域,然后将每个区域缩放到统一大小 | FP32 | FP16 | - | +| CumSum | 累计元素和 | FP32
Int32 | - | - | +| CustomExtractFeatures | 自定义特征提取算子 | FP32 | - | - | +| CustomNormalize | 自定义归一化算子 | FP32 | - | - | +| CustomPredict | 自定义预测算子 | FP32
Int32 | - | - | +| DEConv2DGradFilter | 计算转置卷积对卷积核的梯度 | FP32 | - | | +| DepthToSpace | 将深度数据重新排列到空间维度中 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| DetectionPostProcess | 目标检测后处理 | FP32
Int8
UInt8 | - | - | +| DivFusion | 逐元素除法 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| DivGrad | 计算除法操作的梯度 | FP32 | - | - | +| Dropout | 随机将输入张量的部分元素置 0 | FP16
FP32 | - | - | +| DropoutGrad | 计算Dropout操作的梯度 | FP16
FP32 | - | - | +| DynamicQuant | 动态将浮点张量量化为uint8类型 | FP32 | - | - | +| Eltwise | 元素级运算 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Elu | 激活函数,对负输入使用指数修正 | FP16
FP32 | - | - | +| Equal | 判断输入是否相等 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| EmbeddingLookupFusion | 优化版的词嵌入查找,将整数索引映射为密集向量 | FP32 | - | - | +| Erf | 误差函数 | FP16
FP32 | - | - | +| ExpFusion | 逐元素取指数 | FP16
FP32 | - | FP16
FP32 | +| ExpandDims | 在指定位置插入长度为1的维度 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32
Int32 | +| Fill | 生成一个填充指定常量的张量 | FP16
FP32
Int32
Bool | - | FP16
FP32 | +| Flatten | 数据按维度展开 | FP16
FP32
Int32 | - | - | +| FlattenGrad | 计算Flatten操作的梯度 | FP16
FP32 | - | - | +| Floor | 向下取整 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| FloorDiv | 逐元素向下取整除法 | FP16
FP32
Int32 | FP16 | FP16
FP32 | +| FloorMod | 逐元素取模运算,结果的符号与除数一致 | FP16
FP32
Int32 | FP16 | FP16
FP32 | +| FullConnection | 全连接层 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| FusedBatchNorm | 对输入做标准化 | FP16
FP32
Int8
UInt8 | FP16 | - | +| GatherNd | 根据索引张量从输入张量中收集指定位置的元素 | FP16
FP32
Int32
Int8
UInt8
Bool | - | FP16
FP32 | +| Gather | 沿单一维度收集指定索引位置的元素 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32
Int32 | +| GatherD | 将输入tensor中的元素根据索引tensor进行收集 | FP16
FP32
Int32
Bool | - | - | +| GLU | 门控线性单元激活函数,将输入拆分为两部分并逐元素相乘 | FP32 | - | - | +| Greater | 逐元素比较两个张量,返回A>B的逻辑结果(True/False) | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| GreaterEqual | 逐元素比较两个张量,返回 A≥B的逻辑结果(True/False) | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| GroupNormFusion | 融合优化的组归一化 | FP32 | - | - | +| GRU | 门控循环单元,简化版LSTM | FP16
FP32 | - | - | +| HashtableLookup | 哈希表查找 | FP32
Int32 | - | - | +| InstanceNorm | 实例归一化 | FP16
FP32 | FP16 | - | +| InvertPermutation | 反转置换索引 | FP16
FP32
Int32 | - | - | +| IsFinite | 检测张量中每个元素是否为有限值(非inf/NaN) | FP32 | - | - | +| L2NormalizeFusion | 融合优化的L2归一化 | FP32
Int8
UInt8 | - | - | +| LayerNormFusion | 融合优化的层归一化 | FP16
FP32
Int8 | - | FP16
FP32 | +| LayerNormGrad | 计算层归一化的梯度 | FP16
FP32 | - | - | +| LeakyReLU | 带泄漏的 ReLU激活函数,对负输入给予微小斜率 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Less | 逐元素比较两个张量,返回 AFP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| LessEqual | 逐元素比较A ≤ B,返回布尔张量 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| LRN | 局部响应归一化 | FP32 | - | - | +| Log | 逐元素求对数 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Log1p | 计算log(1+X) | FP32 | - | - | +| LogGrad | 计算对数函数的梯度 | FP16
FP32 | - | - | +| LogicalAnd | 逐元素逻辑与运算 | FP16
FP32
Int32
Bool | FP16 | FP16
FP32 | +| LogicalNot | 元素级逻辑非 | FP16
FP32
Int8
UInt8
Bool | FP16 | FP16
FP32 | +| LogicalOr | 逐元素逻辑或运算 | FP16
FP32
Bool | FP16 | FP16
FP32 | +| LogSoftmax | 对输入向量进行softmax操作,然后再对softmax结果取对数 | FP16
FP32 | - | - | +| LshProjection | 局部敏感哈希投影 | FP32 | - | - | +| LSTM | 长短期记忆网络单元 | FP16
FP32 | - | - | +| LSTMGrad | 计算LSTM对隐状态的反向传播梯度 | FP32 | - | - | +| LSTMGradData | 计算LSTM对输入数据的反向传播梯度 | FP32 | - | - | +| LSTMGradWeight | 计算LSTM对权重的反向传播梯度 | FP32 | - | - | +| MatMulFusion | 对2个输入做矩阵乘法运算 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Maximum | 取元素级最大值 | FP16
FP32
Int32 | FP16 | FP16
FP32 | +| MaximumGrad | 计算最大值函数的梯度 | FP16
FP32 | - | - | +| MaxPoolFusion | 最大池化 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| MaxPoolGrad | 计算最大池化层的梯度 | FP16
FP32 | - | - | +| Merge | 创建一个与输入张量X形状完全相同但所有元素值均为1的新张量 | FP16
FP32 | - | - | +| Minimum | 取元素级最小值 | FP16
FP32
Int32 | FP16 | FP16
FP32 | +| MinimumGrad | 计算最小值函数的梯度 | FP16
FP32 | - | - | +| Mod | 返回除法元素的余数 | FP32
Int32 | - | - | +| MulFusion | 逐元素乘法 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| MulGrad | 计算乘法操作的梯度 | FP32 | - | - | +| Neg | 逐元素求负数 | FP16
FP32
Int32 | FP16 | FP16
FP32 | +| NegGrad | 计算取负操作的梯度 | FP16
FP32 | - | - | +| NLLLoss | 计算负对数似然损失 | FP32 | - | - | +| NLLLossGrad | 计算NLLLoss的梯度 | FP32 | - | - | +| NotEqual | 逐元素比较两个张量,返回 A != B的逻辑结果 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| NonMaxSupppression | 非极大值抑制 | FP32 | - | - | +| NonZero | 返回输入张量中所有非零元素的索引 | Bool | - | - | +| OneHot | 将整数索引张量转换为独热编码表示 | FP16
FP32
Int32 | - | FP16
FP32
Int32 | +| OnesLike | 创建一个与输入张量 X形状完全相同但所有元素值均为1的新张量 | FP16
FP32
Int32 | - | - | +| PadFusion | 将输入张量加上指定的padding,使其达到指定的大小 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| PartialFusion | 部分融合 | FP16
FP32
Int32
Bool | - | - | +| PowFusion | 逐元素求幂 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| PowerGrad | 计算幂运算的梯度 | FP32 | - | - | +| PriorBox | 生成先验框 | FP32
Int8
UInt8 | - | - | +| PReLUFusion | PRelu激活函数 | FP16
FP32 | - | FP16
FP32 | +| QuantDTypeCast | 执行量化数据类型转换 | FP16
FP32
Int8
UInt8 | - | - | +| RaggedRange | 生成非均匀间隔的序列 | FP16
FP32
Int32 | - | - | +| RandomNormal | 生成一个张量,其中的值从正态分布中随机采样 | FP16
FP32 | - | - | +| RandomStandardNormal | 生成服从标准正态分布的随机数张量 | FP16
FP32 | - | - | +| Range | 生成某个区间内的元素 | FP16
FP32
Int32 | - | - | +| Rank | 返回输入张量的维度数 | FP16
FP32 | - | - | +| RealDiv | 逐元素除法 | FP16
FP32 | - | - | +| Reciprocal | 返回倒数 | FP16
FP32
Int8 | FP16 | - | +| ReduceFusion | 归约操作 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32 | +| ReduceScatter | 分布式操作,将输入张量分段后分发到各设备,每设备仅保留一段结果 | FP32 | - | - | +| Reshape | 改变张量形状,总元素个数不变 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32
Int32 | +| Resize | 对输入张量进行上采样或调整大小 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| ResizeGrad | 计算Resize的梯度 | FP16
FP32 | - | - | +| ReverseV2 | 沿指定轴反转张量 | FP32
Int32 | - | - | +| ReverseSequence | 对输入张量的可变长度序列进行部分反转 | FP32 | - | - | +| ROIPooling | 区域兴趣池化 | FP32 | - | - | +| Round | 四舍五入到最接近的整数数值 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Rsqrt | 逐元素计算平方根倒数,用于归一化 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| RsqrtGrad | 计算平方根倒数的梯度 | FP32 | - | - | +| Select | 根据条件从两个张量中选择元素 | FP32
Bool | - | - | +| Selu | 自归一化指数线性单元激活函数 | - | - | - | +| ScaleFusion | 将缩放操作与相邻算子融合 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| ScatterNd | 根据索引将更新张量中的值散射到输出张量的指定位置 | FP16
FP32
Int32 | - | - | +| ScatterNdUpdate | 使用给定值以及输入索引更新输入数据的值 | FP16
FP32
Int32 | - | - | +| SGD | 随机梯度下降优化器 | FP32 | - | - | +| Shape | 获得张量shape | FP16
FP32
Int32
Int8
UInt8
Bool | - | FP16
FP32 | +| SigmoidCroosEntropyWithLogits | 结合Sigmoid激活和交叉熵损失 | FP32 | - | - | +| SigmoidCroosEntropyWithLogitsGrad | 计算带Sigmoid的交叉熵损失的梯度 | FP32 | - | - | +| Sin | 逐元素计算正弦 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| Size | 获取张量维度大小 | FP16
FP32
Int32 | - | - | +| SliceFusion | 张量切片操作 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| SkipGram | Skip-gram模型的核心操作,用于词向量训练 | FP32 | - | - | +| SmoothL1Loss | 平滑L1损失 | FP32 | - | - | +| SmoothL1LossGrad | 计算平滑L1损失的梯度 | FP32 | - | - | +| Softmax | 归一化操作 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| SoftmaxGrad | 计算Softmax的梯度 | FP32 | - | - | +| Softplus | 平滑的ReLU变体 | FP16
FP32 | - | - | +| SpaceToBatch | 高度和宽度维度的值移至深度维度 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| SpaceToBatchND | 将空间维度的数据块拆分到批次维度 | FP16
FP32
Int8
UInt8 | - | FP16
FP32 | +| SpaceToDepth | 将空间数据重组为深度通道 | FP16
FP32 | - | FP16
FP32 | +| SparseToDense | 将稀疏表示转换为密集张量 | FP16
FP32
Int32 | - | FP16
FP32
Int32 | +| SparseSoftmaxCrossEntropyWithLogits | 稀疏标签的Softmax交叉熵 | FP32 | - | - | +| Splice | 沿指定轴连接输入张量的多个切片或范围 | FP16
FP32 | - | - | +| Split | 将输入张量沿指定轴分割成多个较小的输出张量 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| SplitWithOverlap | 带重叠的分割张量 | FP16
FP32 | - | - | +| Sqrt | 逐元素开根号 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| SqrtGrad | 计算平方根的梯度 | FP32 | - | - | +| Square | 逐元素平方 | FP16
FP32
Int8
UInt8 | FP16 | FP16
FP32 | +| SquaredDifference | 逐元素计算 (A-B)² | FP16
FP32 | - | FP16
FP32 | +| Squeeze | 移除维度为1的维度 | FP16
FP32
Int32
Int8
UInt8
Bool | - | FP16
FP32
Int32 | +| StridedSlice | Tensor切片 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| StridedSliceGrad | 计算切片操作的梯度 | FP16
FP32 | - | - | +| Stack | 沿新轴堆叠多个张量 | FP16
FP32
Int32 | - | FP16
FP32 | +| SubFusion | 逐元素相减 | FP16
FP32
Int32
Int8
UInt8 | FP16 | FP16
FP32 | +| SubGrad | 计算减法的梯度 | FP32 | - | - | +| Switch | 根据布尔条件选择输出分支 | FP16
FP32
Int32
Bool | - | - | +| SwitchLayer | 在模型中选择执行不同的子网络分支 | FP16
FP32
Int32
Bool | - | - | +| TensorListFromTensor | 将普通张量转换为张量列表,按指定轴分割 | FP16
FP32
Int32 | - | - | +| TensorListGetItem | 从张量列表中获取指定索引位置的张量 | FP16
FP32
Int32 | - | - | +| TensorListReserve | 预分配一个空张量列表,指定元素数据类型和初始容量 | FP16
FP32
Int32 | - | - | +| TensorListSetItem | 将张量插入张量列表的指定位置 | FP16
FP32
Int32 | - | - | +| TensorListStack | 将张量列表堆叠为一个普通张量 | FP16
FP32
Int32 | - | - | +| TensorScatterAdd | 根据索引将更新张量的值分散添加到目标张量的指定位置 | FP32
Int32 | - | - | +| TileFusion | 平铺给定矩阵 | FP16
FP32
Int32
Bool | FP16 | - | +| TopKFusion | 从输入张量中返回topK个元素 | FP16
FP32
Int32
Int8
UInt8 | - | - | +| Transpose | Tensor转置 | FP16
FP32
Int32
Int8
Bool | FP16 | FP16
FP32 | +| UniformReal | 生成服从均匀分布的随机数张量 | FP32
Int32 | - | - | +| Unique | 返回输入张量中的唯一值,并可返回值的索引和计数 | FP16
FP32
Int32 | - | - | +| UnsortedSegmentSum | 对张量进行分段求和,不要求分段索引有序 | FP16
FP32
Int32 | - | - | +| Unsqueeze | 将输入张量添加一个新的维度 | FP16
FP32
Int32
Int8
UInt8
Bool | FP16 | FP16
FP32
Int32 | +| Unstack | 沿指定轴拆分张量为多个子张量 | FP16
FP32
Int32 | - | - | +| Where | 元素选择 | FP16
FP32
Int32
Bool | - | - | +| ZerosLike | 生成与输入张量形状相同但全为 0的新张量 | FP16
FP32
Int32 | - | - | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md new file mode 100644 index 0000000000000000000000000000000000000000..761eb5f76d4ccd10357da1f4cbe57e403f3ad150 --- /dev/null +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md @@ -0,0 +1,31 @@ +# MindSpore Lite支持的Caffe算子列表 + +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_caffe.md) + +| MindSpore Lite算子名称 | 对应的Caffe算子 | +| ---------------------- | -------------------------------- | +| Activation | ReLU, ReLU6, Sigmoid, TanH, Elu | +| ArgmaxFusion | ArgMax | +| AvgPoolFusion | Pooling | +| BatchNorm | BatchNorm | +| Concat | Concat | +| Conv2DFusion | Convolution | +| Conv2dTransposeFusion | Deconvolution | +| Crop | Crop | +| Eltwise | Eltwise | +| Elu | ELU | +| ExpFusion | Exp | +| Flatten | Flatten | +| FullConnection | InnerProduct | +| MaxPoolFusion | Pooling | +| PowFusion | Power | +| PReLUFusion | PReLU | +| ReduceFusion | Reduction | +| Reshape | Reshape | +| Resize | Interp | +| ScaleFusion | Scale | +| SGD | SGD | +| SliceFusion | Slice | +| Softmax | Softmax | +| TileFusion | Tile | +| Transpose | Permute | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md new file mode 100644 index 0000000000000000000000000000000000000000..2ec2250b7a381fd5dca30fc765984bebbd800d0e --- /dev/null +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md @@ -0,0 +1,100 @@ +# MindSpore Lite支持的ONNX算子列表 + +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_onnx.md) + +> - 以下所有算子,均不支持int64类型输入。 +> - 当前支持使用环境变量export KEEP_ORIGIN_DTYPE=1来保持数据类型为int64,当使用int32数据类型存在溢出时可以考虑使用该选项,但是目前仅为实验性选项,后续将移除。 + +| MindSpore Lite算子名称 | 算子功能 | 对应ONNX算子名称 | 算子规格 | +| ---------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| Abs | 逐元素计算绝对值 | Abs | 不支持uint8类型。不支持输入张量量化参数为空。 | +| Activation | 激活函数 | Relu, LeakyRelu, PRelu, Elu, Tanh, Sigmoid, HardSigmoid, Softplus,Gelu | - | +| AddFusion | 逐元素计算加法 | Add, Int8Add | - | +| AdderFusion | 逐元素加法 | adder_f | - | +| ArgmaxFusion | 求某一维度最大值 | ArgMax | 不支持uint8类型。不支持输入张量量化参数为空。 | +| ArgminFusion | 求某一维度最小值 | ArgMin | - | +| AvgPoolFusion | 平均池化 | AveragePool, GlobalAveragePool, Int8AveragePool | - | +| BatchNorm | 批量归一化 | BatchNormalization | - | +| BiasAdd | 将偏置向量(bias)添加到输入张量 | BiasAdd | - | +| BroadcastTo | 扩维 | Expand | - | +| Cast | 数据类型转换 | Cast | 不支持以下数值类型转换:fp32转int8、fp32转uint32、int32转int8、int32转uint32、int32转uint8、int8转bool、int8转uint8。 | +| Ceil | 向上取整 | Ceil | - | +| Clip | 限制元素范围 | Clip | 仅支持将clip(0, 6)转换为Relu6。 | +| Concat | 拼接张量 | Concat | - | +| ConstantOfShape | 生成一个与输入形状相同的张量,并用指定常量填充 | ConstantOfShape | - | +| Conv2DFusion | 2D卷积 | Conv, Int8Conv, ConvRelu, Int8ConvRelu | - | +| Conv2dTransposeFusion | 执行转置卷积运算 | ConvTranspose | - | +| Cos | 逐元素计算余弦 | Cos | - | +| CumSum | 累计元素和 | CumSum | - | +| DepthToSpace | 将深度数据重新排列到空间维度中 | DepthToSpace | 不支持uint8类型。不支持未知维度输入。 | +| DivFusion | 逐元素除法 | Div | 不支持除数为0。 | +| Dropout | 随机将输入张量的部分元素置 0 | Dropout | - | +| DynamicQuant | 动态将浮点张量量化为 uint8类型 | DynamicQuantizeLinear | - | +| Eltwise | 元素级运算 | Sum, Max | 仅支持输入个数为2。 | +| Elu | 激活函数,对负输入使用指数修正 | Elu, NonMaxSuppression | - | +| Equal | 判断输入是否相等 | Equal | 不支持uint8输入;int8输入不支持bool输出。 | +| Erf | 误差函数 | Erf | - | +| ExpFusion | 逐元素取指数 | Exp | - | +| Flatten | 数据按维度展开 | Flatten | 不支持uint8类型。 | +| Floor | 向下取整 | Floor | - | +| FusedBatchNorm | 对输入做标准化 | BatchNormalization | - | +| GatherNd | 根据索引张量从输入张量中收集指定位置的元素 | GatherND | - | +| Gather | 沿单一维度收集指定索引位置的元素 | Gather | 不支持uint8类型。不支持QuantType_QUANT_NONE量化类型。 | +| GatherD | 将输入tensor中的元素根据索引tensor进行收集 | GatherElements | - | +| GatherNd | 将输入张量的切片聚合成具有indices指定维度的新张量 | GatherND | - | +| Greater | 逐元素比较两个张量,返回 A > B的逻辑结果(True/False) | Greater | - | +| GreaterEqual | 逐元素比较两个张量,返回 A ≥ B的逻辑结果 | GreaterOrEqual | - | +| InstanceNorm | 实例归一化 | InstanceNormalization | - | +| LeakyReLU | 带泄漏的 ReLU激活函数,对负输入给予微小斜率 | LeakyRelu | - | +| Less | 逐元素比较两个张量,返回 A < B的逻辑结果。 | Less | - | +| LRN | 局部响应归一化 | Lrn, LRN | - | +| Log | 逐元素求对数 | Log | 不支持负数输入。 | +| LogicalAnd | 逐元素逻辑与(AND)运算 | And | - | +| LogicalNot | 元素级逻辑非 | Not | - | +| LogicalOr | 逐元素逻辑或(OR)运算 | Or | - | +| LogSoftmax | 对输入向量进行softmax操作,然后再对softmax结果取对数 | LogSoftmax | 不支持inf输入。 | +| LRN | 局部响应标准化,用于防止数据过度拟合 | LRN | - | +| LSTM | 长短期记忆网络单元 | LSTM | - | +| MatMulFusion | 对2个输入做矩阵乘法运算;使用输入张量、一组学习的权重计算内积,并添加偏差 | MatMul, Gemm | - | +| Maximum | 取元素级最大值 | Max | - | +| MaxPoolFusion | 最大池化 | MaxPool, GlobalMaxPool | - | +| Minimum | 取元素级最小值 | Min | - | +| Mod | 返回除法元素的余数 | Mod | - | +| MulFusion | 逐元素乘法 | Mul | - | +| Neg | 逐元素求负数 | Neg | - | +| NonMaxSupppression | 非极大值抑制 | NonMaxSupppression | - | +| NonZero | 返回输入张量中所有非零元素的索引 | NonZero | - | +| OneHot | 将整数索引张量转换为独热编码(One-Hot)表示 | OneHot | - | +| PadFusion | 将输入张量加上指定的 padding,使其达到指定的大小 | Pad | 不支持int32类型。 | +| PowFusion | 逐元素求幂 | Pow | 仅支持指数为单个常数。 | +| PReLUFusion | PRelu激活函数 | PRelu | - | +| RandomNormal | 生成一个张量,其中的值从正态分布(高斯分布) 中随机采样 | RandomNormal | - | +| Range | 生成某个区间内的元素 | Range | - | +| Reciprocal | 返回倒数 | Reciprocal | - | +| ReduceFusion | 归约操作 | ReduceMean, ReduceMax, ReduceMin, ReduceProd, ReduceSum, ReduceSumSquare, ReduceL2,ReduceL1,ReduceLogSum | - | +| Reshape | 改变张量形状,总元素个数不变 | Reshape, Flatten | - | +| Resize | 对输入张量进行上采样或调整大小 | Resize, Upsample | - | +| ReverseSequence | 对输入张量的可变长度序列进行部分反转 | ReverseSequence | - | +| Round | 四舍五入到最接近的整数数值 | Round | - | +| ScatterNd | 根据索引将更新张量中的值散射到输出张量的指定位置 | ScatterND | - | +| ScatterNdUpdate | 使用给定值以及输入索引更新输入数据的值 | ScatterNdUpdate | - | +| Shape | 获得张量shape | Shape | - | +| Sin | 逐元素计算正弦 | Sin | - | +| Size | 获取张量维度大小 | Size | - | +| SliceFusion | 张量切片操作 | Slice | - | +| Softmax | 归一化操作 | Softmax | - | +| SpaceToDepth | 高度和宽度维度的值移至深度维度 | SpaceToDepth | - | +| Splice | 沿指定轴连接输入张量的多个切片或范围。 | Splice | - | +| Split | 将输入张量沿指定轴分割成多个较小的输出张量。 | Split | - | +| Sqrt | 逐元素开根号 | Sqrt | - | +| Squeeze | 移除维度为1的维度 | Squeeze | - | +| StridedSlice | Tensor切片 | Slice, DynamicSlice | - | +| SubFusion | 逐元素相减 | Sub | - | +| TileFusion | 平铺给定矩阵 | Tile | 不支持int8类型。 | +| TopKFusion | 从输入张量中返回top K个元素 | TopK | - | +| Transpose | Tensor转置 | Transpose, Int8Transpose | - | +| Tril | 下三角矩阵 | Trilu(属性upper=0) | - | +| Triu | 上三角矩阵 | Trilu(属性upper=1) | - | +| Unsqueeze | 将输入张量添加一个新的维度 | Unsqueeze | - | +| Where | 元素选择 | NonZero, Where | - | +| 转换工具支持的其他算子 | - | Constant, Atan, Asin, Tan, Loop, Dropout, If, Identity, Int8GivenIntTensorFill, Int8GivenTensorFill, Int8Quantize, Int8Dequantize, LpNormalization | 转换工具支持,但不需要具体实现的算子,一般这类算子在转化工具中被优化而消失,如被融合掉或者使用其他算子代替。 | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md new file mode 100644 index 0000000000000000000000000000000000000000..4e3de3aea5624351f019e439eb0c51a3b69491b7 --- /dev/null +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md @@ -0,0 +1,119 @@ +# MindSpore Lite支持的TensorFlow算子列表 + +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tensorflow.md) + +| MindSpore Lite算子名称 | 对应的TensorFlow算子 | +| ---------------------- | ------------------------------------------------------------ | +| Abs | Abs | +| Activation | Activation, Elu, Relu, Relu6, Sigmoid, Tanh, Selu, LeakyRelu, Softplus | +| Adam | Adam | +| AddFusion | Add, AddV2 | +| All | All | +| ApplyMomentum | ApplyMomentum | +| Assert | Assert | +| Assign | Assign | +| ArgmaxFusion | ArgMax | +| ArgminFusion | ArgMin | +| AvgPoolFusion | AvgPool | +| BatchToSpace | BatchToSpace | +| BatchToSpaceND | BatchToSpaceND | +| BiasAdd | BiasAdd | +| BinaryCrossEntropy | BinaryCrossEntropy | +| BroadcastTo | BroadcastTo | +| Cast | Cast | +| Ceil | Ceil | +| Clip | Clip | +| Concat | ConcatV2 | +| Conv2DFusion | Conv2D | +| Conv2dTransposeFusion | Conv2DBackpropInput | +| Cos | Cos | +| CropAndResize | CropAndResize | +| CumSum | Cumsum | +| DepthToSpace | DepthToSpace | +| DivFusion | Div, RealDiv | +| Dropout | Dropout | +| Elu | NonMaxSuppressionV3 | +| Equal | Equal | +| Erf | Erf | +| ExpFusion | Exp | +| ExpandDims | ExpandDims | +| Fill | Fill | +| Floor | Floor | +| FloorDiv | FloorDiv | +| FloorMod | FloorMod | +| FusedBatchNorm | FusedBatchNorm,
FusedBatchNormV3 | +| GatherNd | GatherNd | +| Gather | GatherV2 | +| Greater | Greater | +| GreaterEqual | GreaterEqual | +| InvertPermutation | InvertPermutation | +| IsFinite | IsFinite | +| LeakyReLU | LeakyRelu | +| Less | Less | +| LessEqual | LessEqual | +| Log | Log | +| Log1p | Log1p | +| LogicalAnd | LogicalAnd | +| LogicalNot | LogicalNot | +| LogicalOr | LogicalOr | +| MatMulFusion | MatMul,
BatchMatMul,
BatchMatMulV2 | +| Maximum | Maximum | +| MaxPoolFusion | MaxPool | +| Merge | Merge | +| Minimum | Minimum | +| Mod | Mod | +| MulFusion | Mul | +| Neg | Neg | +| NotEqual | NotEqual | +| NonMaxSupppression | NonMaxSupppression | +| NonZero | NonZero | +| OneHot | OneHot | +| OnesLike | OnesLike | +| PadFusion | MirrorPad, Pad, PadV2 | +| PowFusion | Pow | +| RaggedRange | RaggedRange | +| RandomNormal | RandomNormal | +| RandomStandardNormal | RandomStandardNormal | +| Range | Range | +| Rank | Rank | +| ReduceFusion | Sum, Max, Min, Mean, Prod, All | +| Reshape | Reshape | +| Resize | ResizeBilinear,
ResizeBicubic,
ResizeNearestNeighbor | +| ReverseV2 | ReverseV2 | +| ReverseSequence | ReverseSequence | +| Round | Round | +| Rsqrt | Rsqrt | +| Select | Select | +| Selu | Selu | +| SGD | SGD | +| Shape | Shape | +| Sin | Sin | +| Size | Size | +| SliceFusion | Slice | +| Softmax | Softmax | +| Softplus | Softplus | +| SpaceToBatchND | SpaceToBatchND | +| Split | Split, SplitV | +| Sqrt | Sqrt | +| Square | Square | +| SquaredDifference | SquaredDifference | +| Squeeze | Squeeze | +| StridedSlice | StridedSlice | +| Stack | Pack | +| SubFusion | Sub | +| Switch | Switch | +| TensorListFromTensor | TensorListFromTensor | +| TensorListGetItem | TensorListGetItem | +| TensorListReserve | TensorListReserve | +| TensorListSetItem | TensorListSetItem | +| TensorListStack | TensorListStack | +| TensorScatterAdd | TensorScatterAdd | +| TileFusion | Tile | +| TopKFusion | TopKV2 | +| Transpose | Transpose | +| UnsortedSegmentSum | UnsortedSegmentSum | +| Where | Where | +| ZerosLike | ZerosLike | +| 转换工具支持的其他算子 | Dropout, Enter,
Exit, If,
LinSpace,
LoopCond,
NextIteration,
StatelessIf,
StatelessWhile,
TensorArrayGatherV3,
TensorArrayReadV3,
TensorArrayScatterV3,
TensorArraySizeV3,
TensorArrayV3,
TensorArrayWriteV3,
While | + +> - [转换工具](https://www.mindspore.cn/lite/docs/zh-CN/master/converter/converter_tool.html)支持,但不需要具体实现的算子,一般这类算子在转化工具中被优化而消失,如被融合掉或者使用其他算子代替。 diff --git a/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md new file mode 100644 index 0000000000000000000000000000000000000000..a5a2b429b2e25b394a2b9fd0b5f3365b81ecd562 --- /dev/null +++ b/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md @@ -0,0 +1,116 @@ +# MindSpore Lite支持的TensorFlow Lite算子列表 + +[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operator_list_lite_for_tflite.md) + +| MindSpore Lite算子名称 | 对应的TensorFlow Lite算子 | +| ---------------------- | ------------------------------------------------------------ | +| Abs | Abs | +| Activation | Activation, ReLU, ReLU6, PReLU,
LeakyReLU, Tanh, HardSwish, Logistic | +| Adam | Adam | +| AddFusion | Add | +| AddN | AddN | +| All | All | +| ApplyMomentum | ApplyMomentum | +| Assign | Assign | +| ArgmaxFusion | Argmax | +| ArgminFusion | Argmin | +| AvgPoolFusion | MeanPooling | +| BatchToSpace | BatchToSpace | +| BatchToSpaceND | BatchToSpaceND | +| BinaryCrossEntropy | BinaryCrossEntropy | +| BroadcastTo | BroadcastTo | +| Cast | Cast,
QUANTIZE,
DEQUANTIZE | +| Ceil | Ceil | +| Clip | Clip | +| Concat | Concat | +| Conv2DFusion | Conv2D | +| Conv2dTransposeFusion | DeConv2D | +| Cos | Cos | +| CustomExtractFeatures | ExtractFeatures | +| CustomNormalize | Normalize | +| CustomPredict | Predict | +| DepthToSpace | DepthToSpace | +| DetectionPostProcess | Custom | +| DivFusion | Div, RealDiv | +| Dropout | Dropout | +| Equal | Equal | +| Erf | Erf | +| ExpFusion | Exp | +| ExpandDims | ExpandDims | +| Fill | Fill | +| Floor | flOOR | +| FloorDiv | FloorDiv | +| FloorMod | FloorMod | +| FullConnection | FullyConnected | +| FusedBatchNorm | FusedBatchNorm | +| GatherNd | GatherND | +| Gather | Gather | +| Greater | Greater | +| GreaterEqual | GreaterEqual | +| HashtableLookup | HashtableLookup | +| InstanceNorm | InstanceNorm | +| IsFinite | IsFinite | +| LeakyReLU | LeakyRelu | +| Less | Less | +| LessEqual | LessEqual | +| LRN | LocalResponseNorm | +| Log | Log | +| Log1p | Log1p | +| LogicalAnd | LogicalAnd | +| LogicalNot | LogicalNot | +| LogicalOr | LogicalOr | +| LogSoftmax | LogSoftmax | +| LshProjection | LshProjection | +| MatMulFusion | BatchMatMul | +| Maximum | Maximum | +| MaxPoolFusion | MaxPooling | +| Minimum | Minimum | +| Mod | Mod | +| MulFusion | Mul | +| Neg | Neg | +| NotEqual | NotEqual | +| NonMaxSupppression | NonMaxSupppression | +| NonZero | NonZero | +| OneHot | OneHot | +| OnesLike | OnesLike | +| PadFusion | Pad, MirrorPad, PadV2 | +| PowFusion | Pow | +| PReLUFusion | PRELU | +| RandomNormal | RandomNormal | +| Range | Range | +| Rank | Rank | +| ReduceFusion | Sum, Mean, ReduceMax, ReduceMin, ReduceProd | +| Reshape | Reshape | +| Resize | ResizeBilinear,
NearestNeighbor | +| ReverseV2 | reverse | +| ReverseSequence | ReverseSequence | +| Round | Round | +| Rsqrt | Rsqrt | +| ScatterNd | ScatterNd | +| ScatterNdUpdate | ScatterNdUpdate | +| SGD | SGD | +| Shape | Shape | +| Sin | Sin | +| SliceFusion | Slice | +| SkipGram | SKipGram | +| Softmax | Softmax | +| SpaceToBatch | SpaceToBatch | +| SpaceToBatchND | SpaceToBatchND | +| SpaceToDepth | SpaceToDepth | +| SparseToDense | SpareToDense | +| Split | Split, SplitV | +| Sqrt | Sqrt | +| Square | Square | +| SquaredDifference | SquaredDifference | +| Squeeze | Squeeze | +| StridedSlice | StridedSlice | +| Stack | Stack | +| SubFusion | Sub | +| TensorScatterAdd | TensorScatterAdd | +| TileFusion | Tile | +| TopKFusion | TopKV2 | +| Transpose | Transpose | +| Unique | Unique | +| Unstack | Unstack | +| Where | Where | +| ZerosLike | ZerosLike | diff --git a/docs/lite/docs/source_zh_cn/reference/operator_lite.rst b/docs/lite/docs/source_zh_cn/reference/operator_lite.rst new file mode 100644 index 0000000000000000000000000000000000000000..ca4fcd1c465b5c7ef0bfb9b4e6dc55371a998c4b --- /dev/null +++ b/docs/lite/docs/source_zh_cn/reference/operator_lite.rst @@ -0,0 +1,15 @@ +Lite算子支持 +=================== + +.. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg + :target: https://gitee.com/mindspore/docs/blob/master/docs/lite/docs/source_zh_cn/reference/operateor_list.rst + :alt: 查看源文件 + +.. toctree:: + :maxdepth: 1 + + operator_list_lite + operator_list_lite_for_onnx + operator_list_lite_for_tflite + operator_list_lite_for_tensorflow + operator_list_lite_for_caffe \ No newline at end of file