# Precipitation-Nowcasting
**Repository Path**: mirrors_Hzzone/Precipitation-Nowcasting
## Basic Information
- **Project Name**: Precipitation-Nowcasting
- **Description**: pytorch implemention of trajGRU.
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 2
- **Created**: 2022-01-11
- **Last Updated**: 2025-09-22
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
### Introduction
This repo has implemented a pytorch-based encoder-forecaster model with RNNs including (TrajGRU, ConvLSTM) to do precipitation nowcasting. For more information about TrajGRU, please refer to [HKO-7](https://github.com/sxjscience/HKO-7).
If you are interested in my implementation of ConvLSTM and TrajGRU, please see [ConvLSTM](https://github.com/Hzzone/Precipitation-Nowcasting/blob/master/nowcasting/models/convLSTM.py) and [TrajGRU](https://github.com/Hzzone/Precipitation-Nowcasting/blob/master/nowcasting/models/trajGRU.py). It is assumed that the input shape should be . All of my implementation have been proved to be effective in HKO-7 Dataset. Hopefully it helps your research.
### Train
Firstly you should apply for HKO-7 Dataset from [HKO-7](https://github.com/sxjscience/HKO-7), and modify somelines in config.py to find the dataset path.
Secondly and last, run `python3 experiments/trajGRU_balanced_mse_mae/main.py`, and then run `python3 experiments/trajGRU_frame_weighted_mse/main.py` since I have finetuned the model on the basis of model trained in last step.
### Environment
Python 3.6+, PyTorch 1.0 and Ubuntu or macOS.
### Demo

### Performance
The performance on HKO-7 dataset is below.
CSI | HSS | Balanced MSE | Balanced MAE | ||||||||
0.5496 | 0.4772 | 0.3774 | 0.2863 | 0.1794 | 0.6713 | 0.6150 | 0.5226 | 0.4253 | 0.2919 | 5860.97 | 15062.46 |