# Precipitation-Nowcasting **Repository Path**: mirrors_Hzzone/Precipitation-Nowcasting ## Basic Information - **Project Name**: Precipitation-Nowcasting - **Description**: pytorch implemention of trajGRU. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2022-01-11 - **Last Updated**: 2025-09-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### Introduction This repo has implemented a pytorch-based encoder-forecaster model with RNNs including (TrajGRU, ConvLSTM) to do precipitation nowcasting. For more information about TrajGRU, please refer to [HKO-7](https://github.com/sxjscience/HKO-7). If you are interested in my implementation of ConvLSTM and TrajGRU, please see [ConvLSTM](https://github.com/Hzzone/Precipitation-Nowcasting/blob/master/nowcasting/models/convLSTM.py) and [TrajGRU](https://github.com/Hzzone/Precipitation-Nowcasting/blob/master/nowcasting/models/trajGRU.py). It is assumed that the input shape should be . All of my implementation have been proved to be effective in HKO-7 Dataset. Hopefully it helps your research. ### Train Firstly you should apply for HKO-7 Dataset from [HKO-7](https://github.com/sxjscience/HKO-7), and modify somelines in config.py to find the dataset path. Secondly and last, run `python3 experiments/trajGRU_balanced_mse_mae/main.py`, and then run `python3 experiments/trajGRU_frame_weighted_mse/main.py` since I have finetuned the model on the basis of model trained in last step. ### Environment Python 3.6+, PyTorch 1.0 and Ubuntu or macOS. ### Demo ![](demo.gif) ### Performance The performance on HKO-7 dataset is below.
CSI HSS Balanced MSE Balanced MAE
0.5496 0.4772 0.3774 0.2863 0.1794 0.6713 0.6150 0.5226 0.4253 0.2919 5860.97 15062.46
### Download [Dropbox Pretrained Model](https://www.dropbox.com/sh/i5goltdq83dmkvc/AABBe5wTuEQF5j3VSMszVQSaa?dl=0) ### Citation ``` @inproceedings{xingjian2017deep, title={Deep learning for precipitation nowcasting: a benchmark and a new model}, author={Shi, Xingjian and Gao, Zhihan and Lausen, Leonard and Wang, Hao and Yeung, Dit-Yan and Wong, Wai-kin and Woo, Wang-chun}, booktitle={Advances in Neural Information Processing Systems}, year={2017} } @inproceedings{xingjian2015convolutional, title={Convolutional LSTM network: A machine learning approach for precipitation nowcasting}, author={Xingjian, SHI and Chen, Zhourong and Wang, Hao and Yeung, Dit-Yan and Wong, Wai-Kin and Woo, Wang-chun}, booktitle={Advances in neural information processing systems}, pages={802--810}, year={2015} } ```