# vstyle **Repository Path**: mirrors_alibaba/vstyle ## Basic Information - **Project Name**: vstyle - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-06 - **Last Updated**: 2025-09-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions
Project Page Badge Paper Arxiv Badge Datasets
### Overview **VStyle** is a bilingual (Chinese & English) benchmark for **voice style adaptation**. It covers four key tasks: - Acoustic attribute control - Natural language instruction following - Role-playing - Implicit empathy ![](data/images/examples.png) To enable automated and reproducible evaluation, we introduce the **LALM-as-a-Judge** framework, which assesses model outputs across three dimensions: - **Textual faithfulness** (Is it saying the right thing?) - **Style adherence** (Does it match the intended style?) - **Naturalness** (Does it sound smooth and natural?) VStyle goes beyond checking correctness — it evaluates **how well the model speaks**. Experiments on various open-source and commercial systems show its effectiveness in differentiating the voice style adaptation abilities of different models. ### Leaderboard - **Evaluation results of different SLMs.** We evaluate three proprietary systems [**GPT-4o Audio (snapshot: gpt-4o-audio-preview-2025-06-03)**](https://platform.openai.com/docs/models/gpt-4oaudio-preview), [**GPT-4o-Mini Audio (snapshot: gpt-4o-mini-audio-preview-2024-12-17)**](https://platform.openai.com/docs/models/gpt-4o-mini), and [**Doubao**](https://www.volcengine.com/docs/6561/1594356). Additionally, we include four open-source end-to-end speech language models with strong speech generation performance: [**Step-Audio**](https://github.com/stepfun-ai/Step-Audio), [**Kimi-Audio**](https://github.com/MoonshotAI/Kimi-Audio), [**Baichuan-Audio**](https://github.com/baichuan-inc/Baichuan-Audio), and [**Qwen-2.5 Omni**](https://github.com/QwenLM/Qwen2.5-Omni). ![](data/images/leaderboard.png) - **Evaluation results of different SLMs across different task types.** ![](data/images/rader.png) ### Evaluate your model We provide a **Gemini API–based evaluation tool** for assessing voice synthesis quality across multiple dimensions. It automatically processes audio samples, generates scores, and produces comprehensive analysis reports. **Quick Example:** ```bash # Install dependencies pip install google-generativeai matplotlib pandas tqdm # Run evaluation on example data python lalm_eval/gemini_eval.py \ --root_dir ./data/examples/model_res/en/wav \ --metadata_path ./data/examples/model_res/en/metadata.jsonl \ --out_dir ./data/examples/eval_res/en \ --gemini_api_key YOUR_API_KEY ``` For detailed usage instructions, see: [lalm_eval/README.md](https://github.com/alibaba/vstyle/blob/main/lalm_eval/README.md). For inference results of other models reported in our paper, please refer to the dataset at https://huggingface.co/datasets/zhanjun/VStyle-responses. ### Human-Model Correlation Analysis We reproduce the correlation study between human annotations and LALM-as-a-Judge as reported in the paper. This validates the reliability of automated evaluation. **Quick Example:** ```bash # Download evaluation results of all seven models huggingface-cli download --repo-type dataset --local-dir-use-symlinks False zhanjun/VStyle-eval-results --local-dir VStyle-eval-results # Compute Spearman correlations python human_align/compute_model_human_spearman_r.py ``` For detailed analysis instructions, see: [human_align/README.md](https://github.com/alibaba/vstyle/blob/main/human_align/README.md) ### Contributing To submit your evaluation results to VStyle, please send the results file (metadata_with_score.jsonl) to [jzhan24@m.fudan.edu.cn](mailto:jzhan24@m.fudan.edu.cn). ### License This project is licensed under the MIT License.