登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
11月29日 Gitee Talk | 模力方舟 AI 沙龙深圳站:看懂算力到应用的下一个主战场!点击立即报名~
代码拉取完成,页面将自动刷新
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
11
Star
40
Fork
36
openEuler
/
open-source-summer
代码
Issues
235
Pull Requests
4
Wiki
统计
流水线
服务
JavaDoc
PHPDoc
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
多Agent协同的内核漏洞自动化复现框架
待办的
#IC46HS
任务
SeanLmax
创建于
2025-04-27 01:38
## 中文描述 --- ### 项目名称 **多Agent协同的内核漏洞自动化复现框架** --- ### 项目描述 #### (1)相关背景 随着内核漏洞复杂度的提升(如CVE-2021-43267的多阶段竞争条件漏洞),传统漏洞复现方法面临三大挑战: 1. **跨阶段漏洞建模难**:漏洞触发需精准控制内存操作、并发调度、硬件状态等多维度条件。 2. **人工经验依赖性强**:OpenEuler安全专家需耗费数周分析漏洞模式并设计PoC,尤其针对新版本kernel上线场景。 3. **工具链割裂**:现有工具(LLM/Syzkaller/PoC生成器)缺乏协同,导致信息流断裂。 #### (2)已有的工作 - Syzkaller支持覆盖率引导的模糊测试,但无法关联漏洞语义。 - GPT-4o/Deepseek-R1具备代码生成能力,但未针对内核漏洞优化。 - 学术界提出基于符号执行的漏洞复现方法(如KLEE),但效率低下。 #### (3)存在的不足 - **单点工具局限性**:LLM生成、模糊测试、PoC验证等环节孤立运行,缺乏反馈闭环。 - **动态环境感知弱**:无法根据Syzkaller运行时状态(如覆盖率/崩溃点)动态调整生成策略。 - **多模态数据处理缺失**:文本型CVE描述、代码补丁、硬件事件日志未实现联合分析。 #### (4)希望改进的点 构建多Agent协同框架,包含以下核心Agent: 1. **CVE Analysis Agent**: - 解析CVE文本(如NVD描述),提取漏洞特征(漏洞类型/触发条件/影响组件)。 - 输入:CVE-2021-43267描述 → 输出:"TIPC协议未校验msg_section大小导致堆溢出"。 2. **Syscall Conversion Agent**: - 构建CVE中kernel的历史漏洞报告(CVE+补丁diff)与Syzkaller语法文件与成功PoC案例的数据库 - 利用RAG技术,支持自然语言到syscall模板的转换(如"制造堆溢出"→`copy_from_user+kmalloc`组合)。 3. **Sequence Generation Agent**: - 根据漏洞特征生成候选syscall序列, 用于syzkaller检测特定CVE漏洞。 4. **Fuzzing Orchestration Agent**: - 动态调度Syzkaller实例,支持并行测试多组候选序列。 - 实时监控KASAN/KCSAN报告,捕获use-after-free、data race等异常。 5. **PoC Synthesis Agent**: - 将触发崩溃的syscall序列转换为可验证的C代码PoC。 #### (5)最终项目实现的目标 1. 实现5个功能Agent的协同工作流,复现10+历史漏洞(含CVE-2021-43267)。 2. 对比社区解决方案,漏洞复现效率提升8倍(平均耗时从72h降至9h)。 3. 提交多Agent框架至OpenEuler社区,支持API扩展(新增Agent接入)。 --- ### 项目难度 **进阶** --- ### 技术领域标签 **漏洞挖掘 | AI安全 | 模糊测试** --- ### 编程语言标签 **Python | Go** --- ### 项目产出要求 - **核心Agent**: - 5个标准化Agent模块(Docker容器化部署)。 - **测试验证**: - 包含5种漏洞类型的测试集(堆溢出/竞争条件/整数溢出等)。 - **文档输出**: - 《多Agent协同协议设计规范》。 - 《Agent扩展开发指南》。 --- ### 项目技术要求 - 掌握多Agent系统设计模式(如swarm、langgraph)。 - 精通Syzkaller内部机制(包括进程调度/崩溃捕获)。 - (加分项)有RAG或Agent相关开发经验。 --- ### 项目成果提交仓库 **主仓库**:https://gitee.com/openeuler/ai-fuzzing **子目录**: - `/agents`(各Agent实现代码) - `/orchestrator`(调度中间件) - `/evaluation`(测试用例与性能报告) --- ### 预估工时 **650小时** | 阶段 | 工时 | 关键产出 | |---------------------|-------|----------------------------| | Agent架构设计 | 150h | Agent职责划分、任务分解 | | 核心Agent开发 | 300h | 5个Agent功能实现 | | Syzkaller协同调度优化 | 120h | 负载均衡算法、故障恢复机制 | | 文档与社区适配 | 80h | 开发者手册、社区集成测试 | --- ### 项目备注 1. **基础设施需求**: - 大模型API接口(实现Agent功能)。 - 昇腾910C(RAG以及相关功能实现)。 2. **合规性**: - 训练数据需过滤敏感信息(如未公开漏洞细节)。 3. **社区协作**: - 与OpenEuler安全委员会联合设计Agent,社区代码合并。 - 请求OpenEuler安全委员会,建立openEuler/ai-fuzzing仓库。 --- ### 项目导师 **SeanLmax | sean.lixiang@aliyun.com** 通过多Agent协同框架,可实现漏洞复现流程的完全自动化与智能化,为OpenEuler构建下一代AI驱动的安全研究基础设施。 --- ## English Description --- ### Project Name **Multi-Agent Collaborative Framework for Automated Kernel Vulnerability Reproduction** --- ### Project Description #### (1) Context With the increasing complexity of kernel vulnerabilities (e.g., multi-stage race condition vulnerabilities like CVE-2021-43267), traditional vulnerability reproduction methods face three major challenges: 1. **Difficulty in Cross-Phase Vulnerability Modeling**: Precise control over multi-dimensional conditions (memory operations, concurrency scheduling, hardware states) is required to trigger vulnerabilities. 2. **Over-Reliance on Manual Expertise**: OpenEuler security experts spend weeks analyzing vulnerability patterns and designing PoCs, especially for newly released kernel versions. 3. **Toolchain Fragmentation**: Existing tools (LLM/Syzkaller/PoC generators) lack collaboration, leading to fragmented information flow. #### (2) Existing Work - Syzkaller supports coverage-guided fuzzing but cannot correlate vulnerability semantics. - GPT-4o/Deepseek-R1 have code generation capabilities but are not optimized for kernel vulnerabilities. - Academic methods like symbolic execution (e.g., KLEE) are proposed for vulnerability reproduction but suffer from inefficiency. #### (3) Limitations - **Isolated Tool Limitations**: LLM generation, fuzzing, and PoC validation operate independently without feedback loops. - **Weak Dynamic Environment Awareness**: Inability to dynamically adjust generation strategies based on Syzkaller runtime states (e.g., coverage/crash points). - **Missing Multimodal Data Processing**: No joint analysis of textual CVE descriptions, code patches, and hardware event logs. #### (4) Proposed Improvements Build a multi-agent collaborative framework with the following core agents: 1. **CVE Analysis Agent**: - Parses CVE texts (e.g., NVD descriptions) to extract vulnerability features (type/trigger conditions/impacted components). - Input: CVE-2021-43267 description → Output: "Heap overflow in TIPC protocol due to unvalidated msg_section size." 2. **Syscall Conversion Agent**: - Constructs a database of historical kernel vulnerability reports (CVE + patch diffs), Syzkaller syntax files, and successful PoC cases. - Uses RAG to convert natural language to syscall templates (e.g., "create heap overflow" → `copy_from_user+kmalloc` combinations). 3. **Sequence Generation Agent**: - Generates candidate syscall sequences for Syzkaller to detect specific CVE vulnerabilities. 4. **Fuzzing Orchestration Agent**: - Dynamically schedules Syzkaller instances to test multiple candidate sequences in parallel. - Monitors KASAN/KCSAN reports in real-time to capture use-after-free, data races, etc. 5. **PoC Synthesis Agent**: - Converts crash-triggering syscall sequences into verifiable C code PoCs. #### (5) Project Goals 1. Implement a collaborative workflow of 5 functional agents to reproduce 10+ historical vulnerabilities (including CVE-2021-43267). 2. Achieve 8x efficiency improvement compared to community solutions (average time reduced from 72h to 9h). 3. Submit the multi-agent framework to the OpenEuler community with API extensibility (supporting new agent integration). --- ### Project Difficulty **Advanced** --- ### Technical Domains **Vulnerability Discovery | AI Security | Fuzz Testing** --- ### Programming Languages **Python | Go** --- ### Deliverables - **Core Agents**: - 5 standardized agent modules (Docker containerized). - **Test Validation**: - Test sets covering 5 vulnerability types (heap overflow/race condition/integer overflow, etc.). - **Documentation**: - *Multi-Agent Collaboration Protocol Design Specifications*. - *Agent Extension Development Guide*. --- ### Technical Requirements - Proficiency in multi-agent system design patterns (e.g., swarm, langgraph). - Deep understanding of Syzkaller internals (process scheduling/crash capture). - (Bonus) Experience with RAG or agent development. --- ### Repository **Main Repo**: https://gitee.com/openeuler/ai-fuzzing **Subdirectories**: - `/agents` (agent implementations) - `/orchestrator` (scheduling middleware) - `/evaluation` (test cases & performance reports) --- ### Estimated Effort **650 hours** | Phase | Hours | Key Deliverables | |------------------------|-------|-------------------------------| | Agent Architecture Design | 150h | Agent role definitions, task decomposition | | Core Agent Development | 300h | Implementation of 5 agents | | Syzkaller Coordination Optimization | 120h | Load balancing algorithms, fault recovery | | Documentation & Community Integration | 80h | Developer manuals, community tests | --- ### Notes 1. **Infrastructure Requirements**: - LLM API access (for agent functionalities). - Ascend 910C (for RAG implementation). 2. **Compliance**: - Training data must filter sensitive information (e.g., unpublished vulnerability details). 3. **Community Collaboration**: - Joint design with OpenEuler Security Committee. - Request to establish the `openEuler/ai-fuzzing` repository. --- ### Mentor **SeanLmax | sean.lixiang@aliyun.com** This multi-agent collaborative framework enables fully automated and intelligent vulnerability reproduction, establishing next-generation AI-driven security research infrastructure for OpenEuler.
## 中文描述 --- ### 项目名称 **多Agent协同的内核漏洞自动化复现框架** --- ### 项目描述 #### (1)相关背景 随着内核漏洞复杂度的提升(如CVE-2021-43267的多阶段竞争条件漏洞),传统漏洞复现方法面临三大挑战: 1. **跨阶段漏洞建模难**:漏洞触发需精准控制内存操作、并发调度、硬件状态等多维度条件。 2. **人工经验依赖性强**:OpenEuler安全专家需耗费数周分析漏洞模式并设计PoC,尤其针对新版本kernel上线场景。 3. **工具链割裂**:现有工具(LLM/Syzkaller/PoC生成器)缺乏协同,导致信息流断裂。 #### (2)已有的工作 - Syzkaller支持覆盖率引导的模糊测试,但无法关联漏洞语义。 - GPT-4o/Deepseek-R1具备代码生成能力,但未针对内核漏洞优化。 - 学术界提出基于符号执行的漏洞复现方法(如KLEE),但效率低下。 #### (3)存在的不足 - **单点工具局限性**:LLM生成、模糊测试、PoC验证等环节孤立运行,缺乏反馈闭环。 - **动态环境感知弱**:无法根据Syzkaller运行时状态(如覆盖率/崩溃点)动态调整生成策略。 - **多模态数据处理缺失**:文本型CVE描述、代码补丁、硬件事件日志未实现联合分析。 #### (4)希望改进的点 构建多Agent协同框架,包含以下核心Agent: 1. **CVE Analysis Agent**: - 解析CVE文本(如NVD描述),提取漏洞特征(漏洞类型/触发条件/影响组件)。 - 输入:CVE-2021-43267描述 → 输出:"TIPC协议未校验msg_section大小导致堆溢出"。 2. **Syscall Conversion Agent**: - 构建CVE中kernel的历史漏洞报告(CVE+补丁diff)与Syzkaller语法文件与成功PoC案例的数据库 - 利用RAG技术,支持自然语言到syscall模板的转换(如"制造堆溢出"→`copy_from_user+kmalloc`组合)。 3. **Sequence Generation Agent**: - 根据漏洞特征生成候选syscall序列, 用于syzkaller检测特定CVE漏洞。 4. **Fuzzing Orchestration Agent**: - 动态调度Syzkaller实例,支持并行测试多组候选序列。 - 实时监控KASAN/KCSAN报告,捕获use-after-free、data race等异常。 5. **PoC Synthesis Agent**: - 将触发崩溃的syscall序列转换为可验证的C代码PoC。 #### (5)最终项目实现的目标 1. 实现5个功能Agent的协同工作流,复现10+历史漏洞(含CVE-2021-43267)。 2. 对比社区解决方案,漏洞复现效率提升8倍(平均耗时从72h降至9h)。 3. 提交多Agent框架至OpenEuler社区,支持API扩展(新增Agent接入)。 --- ### 项目难度 **进阶** --- ### 技术领域标签 **漏洞挖掘 | AI安全 | 模糊测试** --- ### 编程语言标签 **Python | Go** --- ### 项目产出要求 - **核心Agent**: - 5个标准化Agent模块(Docker容器化部署)。 - **测试验证**: - 包含5种漏洞类型的测试集(堆溢出/竞争条件/整数溢出等)。 - **文档输出**: - 《多Agent协同协议设计规范》。 - 《Agent扩展开发指南》。 --- ### 项目技术要求 - 掌握多Agent系统设计模式(如swarm、langgraph)。 - 精通Syzkaller内部机制(包括进程调度/崩溃捕获)。 - (加分项)有RAG或Agent相关开发经验。 --- ### 项目成果提交仓库 **主仓库**:https://gitee.com/openeuler/ai-fuzzing **子目录**: - `/agents`(各Agent实现代码) - `/orchestrator`(调度中间件) - `/evaluation`(测试用例与性能报告) --- ### 预估工时 **650小时** | 阶段 | 工时 | 关键产出 | |---------------------|-------|----------------------------| | Agent架构设计 | 150h | Agent职责划分、任务分解 | | 核心Agent开发 | 300h | 5个Agent功能实现 | | Syzkaller协同调度优化 | 120h | 负载均衡算法、故障恢复机制 | | 文档与社区适配 | 80h | 开发者手册、社区集成测试 | --- ### 项目备注 1. **基础设施需求**: - 大模型API接口(实现Agent功能)。 - 昇腾910C(RAG以及相关功能实现)。 2. **合规性**: - 训练数据需过滤敏感信息(如未公开漏洞细节)。 3. **社区协作**: - 与OpenEuler安全委员会联合设计Agent,社区代码合并。 - 请求OpenEuler安全委员会,建立openEuler/ai-fuzzing仓库。 --- ### 项目导师 **SeanLmax | sean.lixiang@aliyun.com** 通过多Agent协同框架,可实现漏洞复现流程的完全自动化与智能化,为OpenEuler构建下一代AI驱动的安全研究基础设施。 --- ## English Description --- ### Project Name **Multi-Agent Collaborative Framework for Automated Kernel Vulnerability Reproduction** --- ### Project Description #### (1) Context With the increasing complexity of kernel vulnerabilities (e.g., multi-stage race condition vulnerabilities like CVE-2021-43267), traditional vulnerability reproduction methods face three major challenges: 1. **Difficulty in Cross-Phase Vulnerability Modeling**: Precise control over multi-dimensional conditions (memory operations, concurrency scheduling, hardware states) is required to trigger vulnerabilities. 2. **Over-Reliance on Manual Expertise**: OpenEuler security experts spend weeks analyzing vulnerability patterns and designing PoCs, especially for newly released kernel versions. 3. **Toolchain Fragmentation**: Existing tools (LLM/Syzkaller/PoC generators) lack collaboration, leading to fragmented information flow. #### (2) Existing Work - Syzkaller supports coverage-guided fuzzing but cannot correlate vulnerability semantics. - GPT-4o/Deepseek-R1 have code generation capabilities but are not optimized for kernel vulnerabilities. - Academic methods like symbolic execution (e.g., KLEE) are proposed for vulnerability reproduction but suffer from inefficiency. #### (3) Limitations - **Isolated Tool Limitations**: LLM generation, fuzzing, and PoC validation operate independently without feedback loops. - **Weak Dynamic Environment Awareness**: Inability to dynamically adjust generation strategies based on Syzkaller runtime states (e.g., coverage/crash points). - **Missing Multimodal Data Processing**: No joint analysis of textual CVE descriptions, code patches, and hardware event logs. #### (4) Proposed Improvements Build a multi-agent collaborative framework with the following core agents: 1. **CVE Analysis Agent**: - Parses CVE texts (e.g., NVD descriptions) to extract vulnerability features (type/trigger conditions/impacted components). - Input: CVE-2021-43267 description → Output: "Heap overflow in TIPC protocol due to unvalidated msg_section size." 2. **Syscall Conversion Agent**: - Constructs a database of historical kernel vulnerability reports (CVE + patch diffs), Syzkaller syntax files, and successful PoC cases. - Uses RAG to convert natural language to syscall templates (e.g., "create heap overflow" → `copy_from_user+kmalloc` combinations). 3. **Sequence Generation Agent**: - Generates candidate syscall sequences for Syzkaller to detect specific CVE vulnerabilities. 4. **Fuzzing Orchestration Agent**: - Dynamically schedules Syzkaller instances to test multiple candidate sequences in parallel. - Monitors KASAN/KCSAN reports in real-time to capture use-after-free, data races, etc. 5. **PoC Synthesis Agent**: - Converts crash-triggering syscall sequences into verifiable C code PoCs. #### (5) Project Goals 1. Implement a collaborative workflow of 5 functional agents to reproduce 10+ historical vulnerabilities (including CVE-2021-43267). 2. Achieve 8x efficiency improvement compared to community solutions (average time reduced from 72h to 9h). 3. Submit the multi-agent framework to the OpenEuler community with API extensibility (supporting new agent integration). --- ### Project Difficulty **Advanced** --- ### Technical Domains **Vulnerability Discovery | AI Security | Fuzz Testing** --- ### Programming Languages **Python | Go** --- ### Deliverables - **Core Agents**: - 5 standardized agent modules (Docker containerized). - **Test Validation**: - Test sets covering 5 vulnerability types (heap overflow/race condition/integer overflow, etc.). - **Documentation**: - *Multi-Agent Collaboration Protocol Design Specifications*. - *Agent Extension Development Guide*. --- ### Technical Requirements - Proficiency in multi-agent system design patterns (e.g., swarm, langgraph). - Deep understanding of Syzkaller internals (process scheduling/crash capture). - (Bonus) Experience with RAG or agent development. --- ### Repository **Main Repo**: https://gitee.com/openeuler/ai-fuzzing **Subdirectories**: - `/agents` (agent implementations) - `/orchestrator` (scheduling middleware) - `/evaluation` (test cases & performance reports) --- ### Estimated Effort **650 hours** | Phase | Hours | Key Deliverables | |------------------------|-------|-------------------------------| | Agent Architecture Design | 150h | Agent role definitions, task decomposition | | Core Agent Development | 300h | Implementation of 5 agents | | Syzkaller Coordination Optimization | 120h | Load balancing algorithms, fault recovery | | Documentation & Community Integration | 80h | Developer manuals, community tests | --- ### Notes 1. **Infrastructure Requirements**: - LLM API access (for agent functionalities). - Ascend 910C (for RAG implementation). 2. **Compliance**: - Training data must filter sensitive information (e.g., unpublished vulnerability details). 3. **Community Collaboration**: - Joint design with OpenEuler Security Committee. - Request to establish the `openEuler/ai-fuzzing` repository. --- ### Mentor **SeanLmax | sean.lixiang@aliyun.com** This multi-agent collaborative framework enables fully automated and intelligent vulnerability reproduction, establishing next-generation AI-driven security research infrastructure for OpenEuler.
评论 (
1
)
登录
后才可以发表评论
状态
待办的
待办的
进行中
已完成
已拒绝
负责人
未设置
标签
sig/sig-OSCourse
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
未关联
master
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
1
https://gitee.com/openeuler/open-source-summer.git
[email protected]
:openeuler/open-source-summer.git
openeuler
open-source-summer
open-source-summer
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册