# MindSpore-yolov5 **Repository Path**: stefan-est/mind-spore-yolov5 ## Basic Information - **Project Name**: MindSpore-yolov5 - **Description**: 该项目使用MindSpore开源仓库中的yolov5算法,针对算力平台已进行参数修改可直接运行。 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 2 - **Created**: 2023-02-09 - **Last Updated**: 2024-06-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Inference ProcessContents - [YOLOv5 Description](#YOLOv5-description) - [Model Architecture](#model-architecture) - [Dataset](#dataset) - [Quick Start](#quick-start) - [Script Description](#script-description) - [Script and Sample Code](#script-and-sample-code) - [Script Parameters](#script-parameters) - [Training Process](#training-process) - [Training](#training) - [Distributed Training](#distributed-training) - [Evaluation Process](#evaluation-process) - [Evaluation](#evaluation) - [Inference Process](#inference-process) - [Export MindIR](#export-mindir) - [Infer on Ascend310](#infer-on-ascend310) - [result](#result) - [Model Description](#model-description) - [Performance](#performance) - [Evaluation Performance](#evaluation-performance) - [Inference Performance](#inference-performance) - [Transfer Learning](#transfer-learning) - [Description of Random Situation](#description-of-random-situation) - [ModelZoo Homepage](#modelzoo-homepage) # [YOLOv5 Description](#contents) Published in April 2020, YOLOv5 achieved state of the art performance on the COCO dataset for object detection. It is an important improvement of YoloV3, the implementation of a new architecture in the **Backbone** and the modifications in the **Neck** have improved the **mAP**(mean Average Precision) by **10%** and the number of **FPS**(Frame per Second) by **12%**. [code](https://github.com/ultralytics/yolov5) # [Model Architecture](#contents) The YOLOv5 network is mainly composed of CSP and Focus as a backbone, spatial pyramid pooling(SPP) additional module, PANet path-aggregation neck and YOLOv3 head. [CSP](https://arxiv.org/abs/1911.11929) is a novel backbone that can enhance the learning capability of CNN. The [spatial pyramid pooling](https://arxiv.org/abs/1406.4729) block is added over CSP to increase the receptive field and separate out the most significant context features. Instead of Feature pyramid networks (FPN) for object detection used in YOLOv3, the PANet is used as the method for parameter aggregation for different detector levels. To be more specifical, CSPDarknet53 contains 5 CSP modules which use the convolution **C** with kernel size k=3x3, stride s = 2x2; Within the PANet and SPP, **1x1, 5x5, 9x9, 13x13 max poolings are applied. # [Dataset](#contents) Dataset used: [COCO2017]() Note that you can run the scripts with **COCO2017 **or any other datasets with the same format as MS COCO Annotation. But we do suggest user to use MS COCO dataset to experience our model. # [Quick Start](#contents) After installing MindSpore via the official website, you can start training and evaluation as follows: ```bash #run training example(1p) on Ascend by python command python train.py \ --data_dir=xxx/dataset \ --is_distributed=0 \ --yolov5_version='yolov5s' \ --lr=0.02 \ --max_epoch=300 \ --warmup_epochs=20 \ --per_batch_size=128 \ --lr_scheduler=cosine_annealing > log.txt 2>&1 & ``` ```bash # For Ascend device, distributed training example(8p) by shell script bash run_distribute_train.sh xxx/dateset/ xxx/cspdarknet.ckpt rank_table_8pcs.json # For GPU device, distributed training example(8p) by shell script bash run_distribute_train_gpu.sh xxx/dateset [RANK_SIZE] ``` ```bash # run evaluation on Ascend by python command python eval.py \     --data_dir=xxx/dataset \     --eval_shape=640 > log.txt 2>&1 & # run evaluation on GPU by python command python eval.py \ --device_target="GPU" \ --data_dir=xxx/dataset \ --yolov5_version='yolov5s' \ --pretrained="***/*.ckpt" \ --eval_shape=640 > log.txt 2>&1 & ``` ```bash # run evaluation on Ascend by shell script bash run_eval.sh xxx/dataset xxx/yolov5.ckpt ``` # [Script Description](#contents) ## [Script and Sample Code](#contents) ```bash ├── model_zoo ├── README.md // descriptions about all the models ├── yolov5 ├── README.md // descriptions about yolov5 ├── scripts │ ├──run_distribute_train.sh // launch distributed training(8p) in ascend │ ├──run_distribute_train_gpu.sh // launch distributed training(8p) in GPU │ ├──run_standalone_train.sh // launch 1p training in ascend │ ├──run_eval.sh // shell script for evaluation │ ├──rank_table_8pcs.json // the example of rank table settings for 8p training ├──model_utils │ ├──config.py // getting config parameters │ ├──device_adapter.py // getting device info │ ├──local_adapter.py // getting device info │ ├──moxing_adapter.py // Decorator ├── src │ ├──backbone.py // backbone of network │ ├──distributed_sampler.py // iterator of dataset │ ├──initializer.py // initializer of parameters │ ├──logger.py // log function │ ├──loss.py // loss function │ ├──lr_scheduler.py // generate learning rate │ ├──transforms.py // Preprocess data │ ├──util.py // util function │ ├──yolo.py // yolov5 network │ ├──yolo_dataset.py // create dataset for YOLOV5 ├── default_config.yaml // parameter configuration ├── train.py // training script ├── eval.py // evaluation script ├── export.py // export script ``` ## [Script Parameters](#contents) ```python Major parameters in train.py are: optional arguments: --device_target device where the code will be implemented: "Ascend", default is "Ascend" --data_dir Train dataset directory. --per_batch_size Batch size for Training. Default: 8. --pretrained_backbone The ckpt file of CSPDarknet53. Default: "". --resume_yolov5 The ckpt file of YOLOv5, which used to fine tune.Default: "" --lr_scheduler Learning rate scheduler, options: exponential,cosine_annealing. Default: cosine_annealing --lr Learning rate. Default: 0.02 --lr_epochs Epoch of changing of lr changing, split with ",". Default: '220,250' --lr_gamma Decrease lr by a factor of exponential lr_scheduler. Default: 0.1 --eta_min Eta_min in cosine_annealing scheduler. Default: 0. --t_max T-max in cosine_annealing scheduler. Default: 320 --max_epoch Max epoch num to train the model. Default: 320 --warmup_epochs Warmup epochs. Default: 20 --weight_decay Weight decay factor. Default: 0.0005 --momentum Momentum. Default: 0.9 --loss_scale Static loss scale. Default: 64 --label_smooth Whether to use label smooth in CE. Default:0 --label_smooth_factor Smooth strength of original one-hot. Default: 0.1 --log_interval Logging interval steps. Default: 100 --ckpt_path Checkpoint save location. Default: outputs/ --ckpt_interval Save checkpoint interval. Default: None --is_save_on_master Save ckpt on master or all rank, 1 for master, 0 for all ranks. Default: 1 --is_distributed Distribute train or not, 1 for yes, 0 for no. Default: 1 --rank Local rank of distributed. Default: 0 --group_size World size of device. Default: 1 --need_profiler Whether use profiler. 0 for no, 1 for yes. Default: 0 --training_shape Fix training shape. Default: "" --resize_rate Resize rate for multi-scale training. Default: 10 ``` ## [Training Process](#contents) ### Training For Ascend device, standalone training can be started like this: ```python #run training example(1p) by python command python train.py \ --data_dir=xxx/dataset \ --yolov5_version='yolov5s' \ --is_distributed=0 \ --lr=0.02 \ --max_epoch=300 \ --warmup_epochs=20 \ --per_batch_size=128 \ --lr_scheduler=cosine_annealing > log.txt 2>&1 & ``` You should fine tune the params when run training 1p on GPU The python command above will run in the background, you can view the results through the file `log.txt`. After training, you'll get some checkpoint files under the **outputs** folder by default. The loss value will be achieved as follows: ```python # grep "loss:" log.txt 2021-08-06 15:30:15,798:INFO:epoch[0], iter[600], loss:296.308071, fps:44.44 imgs/sec, lr:0.00010661844862625003 2021-08-06 15:31:21,119:INFO:epoch[0], iter[700], loss:276.071959, fps:48.99 imgs/sec, lr:0.00012435863027349114 2021-08-06 15:32:26,185:INFO:epoch[0], iter[800], loss:266.955208, fps:49.18 imgs/sec, lr:0.00014209879736881703 2021-08-06 15:33:30,507:INFO:epoch[0], iter[900], loss:252.610914, fps:49.75 imgs/sec, lr:0.00015983897901605815 2021-08-06 15:34:42,176:INFO:epoch[0], iter[1000], loss:243.106683, fps:44.65 imgs/sec, lr:0.00017757914611138403 2021-08-06 15:35:47,429:INFO:epoch[0], iter[1100], loss:240.498834, fps:49.04 imgs/sec, lr:0.00019531932775862515 2021-08-06 15:36:48,945:INFO:epoch[0], iter[1200], loss:245.711473, fps:52.02 imgs/sec, lr:0.00021305949485395104 2021-08-06 15:37:51,293:INFO:epoch[0], iter[1300], loss:231.388255, fps:51.33 imgs/sec, lr:0.00023079967650119215 2021-08-06 15:38:55,680:INFO:epoch[0], iter[1400], loss:238.904242, fps:49.70 imgs/sec, lr:0.00024853984359651804 2021-08-06 15:39:57,419:INFO:epoch[0], iter[1500], loss:232.161600, fps:51.83 imgs/sec, lr:0.00026628002524375916 2021-08-06 15:41:03,808:INFO:epoch[0], iter[1600], loss:227.844698, fps:48.20 imgs/sec, lr:0.00028402020689100027 2021-08-06 15:42:06,155:INFO:epoch[0], iter[1700], loss:226.668858, fps:51.33 imgs/sec, lr:0.00030176035943441093 ... ``` ### Distributed Training For Ascend device, distributed training example(8p) by shell script: ```bash # For Ascend device, distributed training example(8p) by shell script bash run_distribute_train.sh xxx/dateset/ xxx/cspdarknet.ckpt rank_table_8pcs.json ``` The above shell script will run distribute training in the background. You can view the results through the file train_parallel[X]/log.txt. The loss value will be achieved as follows: ```bash # distribute training result(8p, dynamic shape) ... 2021-08-05 16:01:34,116:INFO:epoch[0], iter[200], loss:415.453676, fps:580.07 imgs/sec, lr:0.0002742903889156878 2021-08-05 16:01:57,588:INFO:epoch[0], iter[300], loss:273.358383, fps:545.96 imgs/sec, lr:0.00041075327317230403 2021-08-05 16:02:26,247:INFO:epoch[0], iter[400], loss:244.621502, fps:446.64 imgs/sec, lr:0.0005472161574289203 2021-08-05 16:02:55,532:INFO:epoch[0], iter[500], loss:234.524876, fps:437.10 imgs/sec, lr:0.000683679012581706 2021-08-05 16:03:25,046:INFO:epoch[0], iter[600], loss:235.185213, fps:434.08 imgs/sec, lr:0.0008201419259421527 2021-08-05 16:03:54,585:INFO:epoch[0], iter[700], loss:228.878598, fps:433.48 imgs/sec, lr:0.0009566047810949385 2021-08-05 16:04:23,932:INFO:epoch[0], iter[800], loss:219.259134, fps:436.29 imgs/sec, lr:0.0010930676944553852 2021-08-05 16:04:52,707:INFO:epoch[0], iter[900], loss:225.741833, fps:444.84 imgs/sec, lr:0.001229530549608171 2021-08-05 16:05:21,872:INFO:epoch[1], iter[1000], loss:218.811336, fps:438.91 imgs/sec, lr:0.0013659934047609568 2021-08-05 16:05:51,216:INFO:epoch[1], iter[1100], loss:219.491889, fps:436.50 imgs/sec, lr:0.0015024563763290644 2021-08-05 16:06:20,546:INFO:epoch[1], iter[1200], loss:219.895906, fps:436.57 imgs/sec, lr:0.0016389192314818501 2021-08-05 16:06:49,521:INFO:epoch[1], iter[1300], loss:218.516680, fps:441.79 imgs/sec, lr:0.001775382086634636 2021-08-05 16:07:18,303:INFO:epoch[1], iter[1400], loss:209.922935, fps:444.79 imgs/sec, lr:0.0019118449417874217 2021-08-05 16:07:47,702:INFO:epoch[1], iter[1500], loss:210.997816, fps:435.60 imgs/sec, lr:0.0020483077969402075 2021-08-05 16:08:16,482:INFO:epoch[1], iter[1600], loss:210.678421, fps:444.88 imgs/sec, lr:0.002184770768508315 2021-08-05 16:08:45,568:INFO:epoch[1], iter[1700], loss:203.285874, fps:440.07 imgs/sec, lr:0.0023212337400764227 2021-08-05 16:09:13,947:INFO:epoch[1], iter[1800], loss:203.014775, fps:451.11 imgs/sec, lr:0.0024576964788138866 2021-08-05 16:09:42,954:INFO:epoch[2], iter[1900], loss:194.683969, fps:441.28 imgs/sec, lr:0.0025941594503819942 ... ``` ## [Evaluation Process](#contents) ### Evaluation Before running the command below, please check the checkpoint path used for evaluation. The file **yolov5.ckpt** used in the follow script is the last saved checkpoint file, but we renamed it to "yolov5.ckpt". ```python # run evaluation by python command python eval.py \     --data_dir=xxx/dataset \     --pretrained=xxx/yolov5.ckpt \     --eval_shape=640 > log.txt 2>&1 & OR # run evaluation by shell script bash run_eval.sh xxx/dataset xxx/yolov5.ckpt ``` The above python command will run in the background. You can view the results through the file "log.txt". The mAP of the test dataset will be as follows: ```python # log.txt =============coco eval reulst========= Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.369 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.573 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.395 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.218 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.418 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.482 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.298 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.501 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.557 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.395 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.619 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677 2020-12-21 17:16:40,322:INFO:testing cost time 0.35h ``` ## Inference Process ### [Export MindIR](#contents) ```shell python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT] ``` The ckpt_file parameter is required, `file_format` should be in ["AIR", "MINDIR"] ### Infer on Ascend310 Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model. Current batch_Size can only be set to 1. ```shell # Ascend310 inference bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DVPP] [DEVICE_ID] ``` - `DVPP` is mandatory, and must choose from ["DVPP", "CPU"], it's case-insensitive. The DVPP hardware restricts width 16-alignment and height even-alignment. Therefore, the network needs to use the CPU operator to process images. - `DATA_PATH` is mandatory, path of the dataset containing images. - `ANN_FILE` is mandatory, path to annotation file. - `DEVICE_ID` is optional, default value is 0. ### result Inference result is saved in current path, you can find result like this in acc.log file. ```bash Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.369 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.573 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.395 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.218 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.418 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.482 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.298 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.501 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.557 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.395 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.619 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677 ``` # [Model Description](#contents) ## [Performance](#contents) ### Evaluation Performance YOLOv5 on 118K images(The annotation and data format must be the same as coco2017) | Parameters | YOLOv5s | YOLOv5s | | -------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | | Resource | Ascend 910 ;CPU 2.60GHz,192cores; Memory, 755G | GPU NV SMX2 V100-32G | | uploaded Date | 7/12/2021 (month/day/year) | 9/15/2021 (month/day/year) | | MindSpore Version | 1.2.0 | 1.3.0 | | Dataset | 118K images | 118K images | | Training Parameters | epoch=300, batch_size=8, lr=0.02,momentum=0.9,warmup_epoch=20| epoch=300, batch_size=32, lr=0.025, warmup_epoch=20, 8p | | Optimizer | Momentum | Momentum | | Loss Function | Sigmoid Cross Entropy with logits, Giou Loss | Sigmoid Cross Entropy with logits, Giou Loss | | outputs | boxes and label | boxes and label | | Loss | 111.970097 | 85 | | Speed | 8p about 450 FPS | 8p about 290 FPS | | Total time | 8p 21h28min | 8p 35h | | Checkpoint for Fine tuning | 53.62M (.ckpt file) | 58.87M (.ckpt file) | | Scripts | https://gitee.com/mindspore/models/tree/r1.5/official/cv/yolov5 | https://gitee.com/mindspore/models/tree/r1.5/official/cv/yolov5 | ### Inference Performance | Parameters | YOLOv5s | YOLOv5s | | ------------------- | -----------------------------------------------| ---------------------------------------------| | Resource | Ascend 910 ;CPU 2.60GHz,192cores; Memory, 755G | GPU NV SMX2 V100-32G | | Uploaded Date | 7/12/2021 (month/day/year) | 9/15/2021 (month/day/year) | | MindSpore Version | 1.2.0 | 1.3.0 | | Dataset | 20K images | 20K images | | batch_size | 1 | 1 | | outputs | box position and sorces, and probability | box position and sorces, and probability | | Accuracy | mAP >= 36.7%(shape=640) | mAP >= 36.7%(shape=640) | | Model for inference | 56.67M (.ckpt file) | 58.87M (.ckpt file) | ### Transfer Learning # [Description of Random Situation](#contents) In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py. # [ModelZoo Homepage](#contents) Please check the official [homepage](https://gitee.com/mindspore/models).