# stanford-corenlp **Repository Path**: tekin/stanford-corenlp ## Basic Information - **Project Name**: stanford-corenlp - **Description**: StanfordCoreNLP:斯坦福的,提供依存句法分析功能。 Github地址:https://github.com/Lynten/stanford-corenlp 官网:https://stanfordnlp.github.io/CoreNLP/ - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2018-12-25 - **Last Updated**: 2021-05-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## stanfordcorenlp [![PyPI](https://img.shields.io/pypi/v/stanfordcorenlp.svg)]() [![GitHub release](https://img.shields.io/github/release/Lynten/stanford-corenlp.svg)]() [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/stanfordcorenlp.svg)]() `stanfordcorenlp` is a Python wrapper for [Stanford CoreNLP](https://stanfordnlp.github.io/CoreNLP/). It provides a simple API for text processing tasks such as Tokenization, Part of Speech Tagging, Named Entity Reconigtion, Constituency Parsing, Dependency Parsing, and more. ## Prerequisites Java 1.8+ (Check with command: `java -version`) ([Download Page](http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk8-downloads-2133151-zhs.html)) Stanford CoreNLP ([Download Page](https://stanfordnlp.github.io/CoreNLP/history.html)) | Py Version | CoreNLP Version | | --- | --- | |v3.7.0.1 v3.7.0.2 | CoreNLP 3.7.0 | |v3.8.0.1 | CoreNLP 3.8.0 | |v3.9.1.1 | CoreNLP 3.9.1 | ## Installation `pip install stanfordcorenlp` ## Example ### Simple Usage ```python # Simple usage from stanfordcorenlp import StanfordCoreNLP nlp = StanfordCoreNLP(r'G:\JavaLibraries\stanford-corenlp-full-2018-02-27') sentence = 'Guangdong University of Foreign Studies is located in Guangzhou.' print 'Tokenize:', nlp.word_tokenize(sentence) print 'Part of Speech:', nlp.pos_tag(sentence) print 'Named Entities:', nlp.ner(sentence) print 'Constituency Parsing:', nlp.parse(sentence) print 'Dependency Parsing:', nlp.dependency_parse(sentence) nlp.close() # Do not forget to close! The backend server will consume a lot memery. ``` Output format: ```python # Tokenize [u'Guangdong', u'University', u'of', u'Foreign', u'Studies', u'is', u'located', u'in', u'Guangzhou', u'.'] # Part of Speech [(u'Guangdong', u'NNP'), (u'University', u'NNP'), (u'of', u'IN'), (u'Foreign', u'NNP'), (u'Studies', u'NNPS'), (u'is', u'VBZ'), (u'located', u'JJ'), (u'in', u'IN'), (u'Guangzhou', u'NNP'), (u'.', u'.')] # Named Entities [(u'Guangdong', u'ORGANIZATION'), (u'University', u'ORGANIZATION'), (u'of', u'ORGANIZATION'), (u'Foreign', u'ORGANIZATION'), (u'Studies', u'ORGANIZATION'), (u'is', u'O'), (u'located', u'O'), (u'in', u'O'), (u'Guangzhou', u'LOCATION'), (u'.', u'O')] # Constituency Parsing (ROOT (S (NP (NP (NNP Guangdong) (NNP University)) (PP (IN of) (NP (NNP Foreign) (NNPS Studies)))) (VP (VBZ is) (ADJP (JJ located) (PP (IN in) (NP (NNP Guangzhou))))) (. .))) # Dependency Parsing [(u'ROOT', 0, 7), (u'compound', 2, 1), (u'nsubjpass', 7, 2), (u'case', 5, 3), (u'compound', 5, 4), (u'nmod', 2, 5), (u'auxpass', 7, 6), (u'case', 9, 8), (u'nmod', 7, 9), (u'punct', 7, 10)] ``` ### Other Human Languages Support Note: you must download an additional model file and place it in the `.../stanford-corenlp-full-2018-02-27` folder. For example, you should download the `stanford-chinese-corenlp-2018-02-27-models.jar` file if you want to process Chinese. ```python # _*_coding:utf-8_*_ # Other human languages support, e.g. Chinese sentence = '清华大学位于北京。' with StanfordCoreNLP(r'G:\JavaLibraries\stanford-corenlp-full-2018-02-27', lang='zh') as nlp: print(nlp.word_tokenize(sentence)) print(nlp.pos_tag(sentence)) print(nlp.ner(sentence)) print(nlp.parse(sentence)) print(nlp.dependency_parse(sentence)) ``` ### General Stanford CoreNLP API Since this will load all the models which require more memory, initialize the server with more memory. 8GB is recommended. ```python # General json output nlp = StanfordCoreNLP(r'path_to_corenlp', memory='8g') print nlp.annotate(sentence) nlp.close() ``` You can specify properties: - `annotators`: `tokenize, ssplit, pos, lemma, ner, parse, depparse, dcoref` ([See Detail](https://stanfordnlp.github.io/CoreNLP/annotators.html)) - `pipelineLanguage`: `en, zh, ar, fr, de, es` (English, Chinese, Arabic, French, German, Spanish) ([See Annotator Support Detail](https://stanfordnlp.github.io/CoreNLP/human-languages.html)) - `outputFormat`: `json, xml, text` ```python text = 'Guangdong University of Foreign Studies is located in Guangzhou. ' \ 'GDUFS is active in a full range of international cooperation and exchanges in education. ' props={'annotators': 'tokenize,ssplit,pos','pipelineLanguage':'en','outputFormat':'xml'} print nlp.annotate(text, properties=props) nlp.close() ``` ### Use an Existing Server Start a [CoreNLP Server](https://stanfordnlp.github.io/CoreNLP/corenlp-server.html) with command: ``` java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000 -timeout 15000 ``` And then: ```python # Use an existing server nlp = StanfordCoreNLP('http://localhost', port=9000) ``` ## Debug ```python import logging from stanfordcorenlp import StanfordCoreNLP # Debug the wrapper nlp = StanfordCoreNLP(r'path_or_host', logging_level=logging.DEBUG) # Check more info from the CoreNLP Server nlp = StanfordCoreNLP(r'path_or_host', quiet=False, logging_level=logging.DEBUG) nlp.close() ``` ## Build We use `setuptools` to package our project. You can build from the latest source code with the following command: ``` $ python setup.py bdist_wheel --universal ``` You will see the `.whl` file under `dist` directory.