# tensorflow_multigpu_imagenet **Repository Path**: wangfuchao/tensorflow_multigpu_imagenet ## Basic Information - **Project Name**: tensorflow_multigpu_imagenet - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2018-07-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # tensorflow_multigpu_imagenet Code for training different architectures( DenseNet, ResNet, AlexNet, GoogLeNet, VGG, NiN) on ImageNet or other datasets + Multi-GPU support + Transfer Learning support This repository provides an easy-to-use way for training different well-known deep learning architectures on different datasets. The code reads dataset information from a text or csv file and directly loads images from disk. Moreover, multi-GPU and transfer learning are supported. This code takes advantage of these repositories: https://github.com/soumith/imagenet-multiGPU.torch https://github.com/ry/tensorflow-resnet https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10 #Example of usages: Training: python train.py --architecture alexnet --path_prefix /project/datasets/imagenet/train/ --data_info train.txt Evaluating a trained model: python eval.py --num_threads 8 --architecture alexnet --log_dir "alexnet_Run-17-07-2017-15:31:57" --path_prefix /project/datasets/imagenet/train/ --data_info val.txt Transfer learning: python train.py --transfer_mode 1 --architecture alexnet --retrain_from ./alexnet_Run-17-07-2017-15:31:57