# CosId **Repository Path**: wisdomCast/CosId ## Basic Information - **Project Name**: CosId - **Description**: 通用、灵活、高性能的分布式 ID 生成器 - **Primary Language**: Java - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://github.com/Ahoo-Wang/CosId - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 179 - **Created**: 2024-06-18 - **Last Updated**: 2024-06-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

# [CosId](https://cosid.ahoo.me/) Universal, flexible, high-performance distributed ID generator [![License](https://img.shields.io/badge/license-Apache%202-4EB1BA.svg)](https://www.apache.org/licenses/LICENSE-2.0.html) [![GitHub release](https://img.shields.io/github/release/Ahoo-Wang/CosId.svg)](https://github.com/Ahoo-Wang/CosId/releases) [![Maven Central](https://maven-badges.herokuapp.com/maven-central/me.ahoo.cosid/cosid-core/badge.svg)](https://maven-badges.herokuapp.com/maven-central/me.ahoo.cosid/cosid-core) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/dfd1d6237a1644409548ebfbca300dc1)](https://app.codacy.com/gh/Ahoo-Wang/CosId?utm_source=github.com&utm_medium=referral&utm_content=Ahoo-Wang/CosId&utm_campaign=Badge_Grade_Settings) [![codecov](https://codecov.io/gh/Ahoo-Wang/CosId/branch/main/graph/badge.svg?token=L0N51NB7ET)](https://codecov.io/gh/Ahoo-Wang/CosId) ![Integration Test Status](https://github.com/Ahoo-Wang/CosId/actions/workflows/integration-test.yml/badge.svg) > [中文文档](https://cosid.ahoo.me/) ## Introduction *[CosId](https://github.com/Ahoo-Wang/CosId)* aims to provide a universal, flexible and high-performance distributed ID generator. - `CosIdGenerator` : Stand-alone *TPS performance:15,570,085 ops/s* , three times that of `UUID.randomUUID()`,global trend increasing based-time. - `SnowflakeId` : Stand-alone *TPS performance:4,096,000 ops/s* [JMH Benchmark](#jmh-benchmark) , It mainly solves two major problems of `SnowflakeId`: machine number allocation problem and clock backwards problem and provide a more friendly and flexible experience. - `SegmentId`: Get a segment (`Step`) ID every time to reduce the network IO request frequency of the `IdSegment` distributor and improve performance. - `IdSegmentDistributor`: - `RedisIdSegmentDistributor`: `IdSegment` distributor based on *Redis*. - `JdbcIdSegmentDistributor`: The *Jdbc-based* `IdSegment` distributor supports various relational databases. - `ZookeeperIdSegmentDistributor`: `IdSegment` distributor based on *Zookeeper*. - `MongoIdSegmentDistributor`: `IdSegment` distributor based on *MongoDB*. - `SegmentChainId`(**recommend**):`SegmentChainId` (*lock-free*) is an enhancement of `SegmentId`, the design diagram is as follows. `PrefetchWorker` maintains a `safe distance`, so that `SegmentChainId` achieves approximately `AtomicLong` *TPS performance: 127,439,148+ ops/s* [JMH Benchmark](#jmh-benchmark) . - `PrefetchWorker` maintains a safe distance (`safeDistance`), and supports dynamic `safeDistance` expansion and contraction based on hunger status. ## SnowflakeId

Snowflake

> *SnowflakeId* is a distributed ID algorithm that uses `Long` (64-bit) bit partition to generate ID. > The general bit allocation scheme is : `timestamp` (41-bit) + `machineId` (10-bit) + `sequence` (12-bit) = 63-bit。 - 41-bit `timestamp` = (1L<<41)/(1000/3600/24/365) approximately 69 years of timestamp can be stored, that is, the usable absolute time is `EPOCH` + 69 years. Generally, we need to customize `EPOCH` as the product development time. In addition, we can increase the number of allocated bits by compressing other areas, The number of timestamp bits to extend the available time. - 10-bit `machineId` = (1L<<10) = 1024 That is, 1024 copies of the same business can be deployed (there is no master-slave copy in the Kubernetes concept, and the definition of Kubernetes is directly used here) instances. Generally, there is no need to use so many, so it will be redefined according to the scale of deployment. - 12-bit `sequence` = (1L<<12) * 1000 = 4096000 That is, a single machine can generate about 409W ID per second, and a global same-service cluster can generate `4096000*1024=4194304000=4.19 billion (TPS)`. It can be seen from the design of SnowflakeId: - :thumbsup: The first 41-bit are a `timestamp`,So *SnowflakeId* is local monotonically increasing, and affected by global clock synchronization *SnowflakeId* is global trend increasing. - :thumbsup: `SnowflakeId` does not have a strong dependency on any third-party middleware, and its performance is also very high. - :thumbsup: The bit allocation scheme can be flexibly configured according to the needs of the business system to achieve the optimal use effect. - :thumbsdown: Strong reliance on the local clock, potential clock moved backwards problems will cause ID duplication. - :thumbsdown: The `machineId` needs to be set manually. If the `machineId` is manually assigned during actual deployment, it will be very inefficient. --- *[CosId-SnowflakeId](https://github.com/Ahoo-Wang/CosId/tree/main/cosid-core/src/main/java/me/ahoo/cosid/snowflake)* It mainly solves two major problems of `SnowflakeId`: machine number allocation problem and clock backwards problem and provide a more friendly and flexible experience. ### MachineIdDistributor > Currently [CosId](https://github.com/Ahoo-Wang/CosId) provides the following three `MachineId` distributors. #### ManualMachineIdDistributor ```yaml cosid: snowflake: machine: distributor: type: manual manual: machine-id: 0 ``` > Manually distribute `MachineId` #### StatefulSetMachineIdDistributor ```yaml cosid: snowflake: machine: distributor: type: stateful_set ``` > Use the stable identification ID provided by the `StatefulSet` of `Kubernetes` as the machine number. #### RedisMachineIdDistributor

Redis Machine Id Distributor

Machine Id Safe Guard

```yaml cosid: snowflake: machine: distributor: type: redis ``` > Use *Redis* as the distribution store for the machine number. ### ClockBackwardsSynchronizer ```yaml cosid: snowflake: clock-backwards: spin-threshold: 10 broken-threshold: 2000 ``` The default `DefaultClockBackwardsSynchronizer` clock moved backwards synchronizer uses active wait synchronization strategy, `spinThreshold` (default value 10 milliseconds) is used to set the spin wait threshold, when it is greater than `spinThreshold`, use thread sleep to wait for clock synchronization, if it exceeds` BrokenThreshold` (default value 2 seconds) will directly throw a `ClockTooManyBackwardsException` exception. ### MachineStateStorage ```java public class MachineState { public static final MachineState NOT_FOUND = of(-1, -1); private final int machineId; private final long lastTimeStamp; public MachineState(int machineId, long lastTimeStamp) { this.machineId = machineId; this.lastTimeStamp = lastTimeStamp; } public int getMachineId() { return machineId; } public long getLastTimeStamp() { return lastTimeStamp; } public static MachineState of(int machineId, long lastStamp) { return new MachineState(machineId, lastStamp); } } ``` ```yaml cosid: snowflake: machine: state-storage: local: state-location: ./cosid-machine-state/ ``` The default `LocalMachineStateStorage` local machine state storage uses a local file to store the machine number and the most recent timestamp, which is used as a `MachineState` cache. ### ClockSyncSnowflakeId ```yaml cosid: snowflake: share: clock-sync: true ``` The default `SnowflakeId` will directly throw a `ClockBackwardsException` when a clock moved backwards occurs, while using the `ClockSyncSnowflakeId` will use the `ClockBackwardsSynchronizer` to actively wait for clock synchronization to regenerate the ID, providing a more user-friendly experience. ### SafeJavaScriptSnowflakeId ```java SnowflakeId snowflakeId=SafeJavaScriptSnowflakeId.ofMillisecond(1); ``` The `Number.MAX_SAFE_INTEGER` of `JavaScript` has only 53-bit. If the 63-bit `SnowflakeId` is directly returned to the front end, the value will overflow. Usually we can convert `SnowflakeId` to String type or customize `SnowflakeId` Bit allocation is used to shorten the number of bits of `SnowflakeId` so that `ID` does not overflow when it is provided to the front end. ### SnowflakeFriendlyId (Can parse `SnowflakeId` into a more readable `SnowflakeIdState`) ```yaml cosid: snowflake: share: friendly: true ``` ```java public class SnowflakeIdState { private final long id; private final int machineId; private final long sequence; private final LocalDateTime timestamp; /** * {@link #timestamp}-{@link #machineId}-{@link #sequence} */ private final String friendlyId; } ``` ```java public interface SnowflakeFriendlyId extends SnowflakeId { SnowflakeIdState friendlyId(long id); SnowflakeIdState ofFriendlyId(String friendlyId); default SnowflakeIdState friendlyId() { long id = generate(); return friendlyId(id); } } ``` ```java SnowflakeFriendlyId snowflakeFriendlyId=new DefaultSnowflakeFriendlyId(snowflakeId); SnowflakeIdState idState=snowflakeFriendlyId.friendlyId(); idState.getFriendlyId(); //20210623131730192-1-0 ``` ## SegmentId

Segment Id

### RedisIdSegmentDistributor ```yaml cosid: segment: enabled: true distributor: type: redis ``` ### JdbcIdSegmentDistributor > Initialize the `cosid` table ```mysql create table if not exists cosid ( name varchar(100) not null comment '{namespace}.{name}', last_max_id bigint not null default 0, last_fetch_time bigint not null, constraint cosid_pk primary key (name) ) engine = InnoDB; ``` ```yaml spring: datasource: url: jdbc:mysql://localhost:3306/test_db username: root password: root cosid: segment: enabled: true distributor: type: jdbc jdbc: enable-auto-init-cosid-table: false enable-auto-init-id-segment: true ``` After enabling `enable-auto-init-id-segment:true`, the application will try to create the `idSegment` record when it starts to avoid manual creation. Similar to the execution of the following initialization sql script, there is no need to worry about misoperation, because `name` is the primary key. ```mysql insert into cosid (name, last_max_id, last_fetch_time) value ('namespace.name', 0, unix_timestamp()); ``` ### SegmentChainId ![SegmentChainId](./docs/SegmentChainId.png) ```yaml cosid: segment: enabled: true mode: chain chain: safe-distance: 5 prefetch-worker: core-pool-size: 2 prefetch-period: 1s distributor: type: redis share: offset: 0 step: 100 provider: bizC: offset: 10000 step: 100 bizD: offset: 10000 step: 100 ``` ## IdGeneratorProvider ```yaml cosid: snowflake: provider: bizA: # timestamp-bit: sequence-bit: 12 bizB: # timestamp-bit: sequence-bit: 12 ``` ```java IdGenerator idGenerator=idGeneratorProvider.get("bizA"); ``` In actual use, we generally do not use the same `IdGenerator` for all business services, but different businesses use different `IdGenerator`, then `IdGeneratorProvider` exists to solve this problem, and it is the container of `IdGenerator` , You can get the corresponding `IdGenerator` by the business name. ### CosIdPlugin (MyBatis Plugin) > Kotlin DSL ``` kotlin implementation("me.ahoo.cosid:cosid-mybatis:${cosidVersion}") ``` ```java @Target({ElementType.FIELD}) @Documented @Retention(RetentionPolicy.RUNTIME) public @interface CosId { String value() default IdGeneratorProvider.SHARE; boolean friendlyId() default false; } ``` ```java public class LongIdEntity { @CosId(value = "safeJs") private Long id; public Long getId() { return id; } public void setId(Long id) { this.id = id; } } public class FriendlyIdEntity { @CosId(friendlyId = true) private String id; public String getId() { return id; } public void setId(String id) { this.id = id; } } ``` ```java @Mapper public interface OrderRepository { @Insert("insert into t_table (id) value (#{id});") void insert(LongIdEntity order); @Insert({ ""}) void insertList(List list); } ``` ```java LongIdEntity entity=new LongIdEntity(); entityRepository.insert(entity); /** * { * "id": 208796080181248 * } */ return entity; ``` ### ShardingSphere Plugin > [cosid-shardingsphere](https://github.com/apache/shardingsphere/tree/master/features/sharding/plugin/cosid) #### CosIdKeyGenerateAlgorithm (Distributed-Id) ```yaml spring: shardingsphere: rules: sharding: key-generators: cosid: type: COSID props: id-name: __share__ ``` #### Interval-based time range sharding algorithm

CosIdIntervalShardingAlgorithm

- Ease of use: supports multiple data types (`Long`/`LocalDateTime`/`DATE`/ `String` / `SnowflakeId`),The official implementation is to first convert to a string and then convert to `LocalDateTime`, the conversion success rate is affected by the time formatting characters. - Performance: Compared to `org.apache.shardingsphere.sharding.algorithm.sharding.datetime.IntervalShardingAlgorithm` ,The performance is *1200~4000* times higher. | **PreciseShardingValue** | **RangeShardingValue** | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ![Throughput Of IntervalShardingAlgorithm - PreciseShardingValue](./document/docs/.vuepress/public/assets/perf/sharding/Throughput-Of-IntervalShardingAlgorithm-PreciseShardingValue.png) | ![Throughput Of IntervalShardingAlgorithm - RangeShardingValue](./document/docs/.vuepress/public/assets/perf/sharding/Throughput-Of-IntervalShardingAlgorithm-RangeShardingValue.png) | - CosIdIntervalShardingAlgorithm - type: COSID_INTERVAL ```yaml spring: shardingsphere: rules: sharding: sharding-algorithms: alg-name: type: COSID_INTERVAL props: logic-name-prefix: logic-name-prefix id-name: cosid-name datetime-lower: 2021-12-08 22:00:00 datetime-upper: 2022-12-01 00:00:00 sharding-suffix-pattern: yyyyMM datetime-interval-unit: MONTHS datetime-interval-amount: 1 ``` #### CosIdModShardingAlgorithm

CosId Mod Sharding Algorithm

- Performance: Compared to `org.apache.shardingsphere.sharding.algorithm.sharding.datetime.IntervalShardingAlgorithm` ,The performance is *1200~4000* times higher.And it has higher stability and no serious performance degradation. | **PreciseShardingValue** | **RangeShardingValue** | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ![Throughput Of ModShardingAlgorithm - PreciseShardingValue](./document/docs/.vuepress/public/assets/perf/sharding/Throughput-Of-ModShardingAlgorithm-PreciseShardingValue.png) | ![Throughput Of ModShardingAlgorithm - RangeShardingValue](./document/docs/.vuepress/public/assets/perf/sharding/Throughput-Of-ModShardingAlgorithm-RangeShardingValue.png) | ```yaml spring: shardingsphere: rules: sharding: sharding-algorithms: alg-name: type: COSID_MOD props: mod: 4 logic-name-prefix: t_table_ ``` ## Examples > 项目中根据使用的场景(`jdbc`/`proxy`/`redis-cosid`/`redis`/`shardingsphere`/`zookeeper`等)提供了对应的例子,实践过程中可以参照配置快速接入。 [点击查看Examples](https://github.com/Ahoo-Wang/CosId/tree/main/examples) ## Installation ### Gradle > Kotlin DSL ``` kotlin val cosidVersion = "1.14.5"; implementation("me.ahoo.cosid:cosid-spring-boot-starter:${cosidVersion}") ``` ### Maven ```xml 4.0.0 demo 1.14.5 me.ahoo.cosid cosid-spring-boot-starter ${cosid.version} ``` ### application.yaml ```yaml spring: shardingsphere: datasource: names: ds0,ds1 ds0: type: com.zaxxer.hikari.HikariDataSource driver-class-name: com.mysql.cj.jdbc.Driver jdbcUrl: jdbc:mysql://localhost:3306/cosid_db_0 username: root password: root ds1: type: com.zaxxer.hikari.HikariDataSource driver-class-name: com.mysql.cj.jdbc.Driver jdbcUrl: jdbc:mysql://localhost:3306/cosid_db_1 username: root password: root props: sql-show: true rules: sharding: binding-tables: - t_order,t_order_item tables: cosid: actual-data-nodes: ds0.cosid t_table: actual-data-nodes: ds0.t_table_$->{0..1} table-strategy: standard: sharding-column: id sharding-algorithm-name: table-inline t_date_log: actual-data-nodes: ds0.t_date_log_202112 key-generate-strategy: column: id key-generator-name: snowflake table-strategy: standard: sharding-column: create_time sharding-algorithm-name: data-log-interval sharding-algorithms: table-inline: type: COSID_MOD props: mod: 2 logic-name-prefix: t_table_ data-log-interval: type: COSID_INTERVAL props: logic-name-prefix: t_date_log_ datetime-lower: 2021-12-08 22:00:00 datetime-upper: 2022-12-01 00:00:00 sharding-suffix-pattern: yyyyMM datetime-interval-unit: MONTHS datetime-interval-amount: 1 key-generators: snowflake: type: COSID props: id-name: snowflake cosid: namespace: ${spring.application.name} machine: enabled: true # stable: true # machine-bit: 10 # instance-id: ${HOSTNAME} distributor: type: redis # manual: # machine-id: 0 snowflake: enabled: true # epoch: 1577203200000 clock-backwards: spin-threshold: 10 broken-threshold: 2000 share: clock-sync: true friendly: true provider: order_item: # timestamp-bit: sequence-bit: 12 snowflake: sequence-bit: 12 safeJs: machine-bit: 3 sequence-bit: 9 segment: enabled: true mode: chain chain: safe-distance: 5 prefetch-worker: core-pool-size: 2 prefetch-period: 1s distributor: type: redis share: offset: 0 step: 100 provider: order: offset: 10000 step: 100 longId: offset: 10000 step: 100 ``` ## JMH-Benchmark - The development notebook : MacBook Pro (M1) - All benchmark tests are carried out on the development notebook. - Deploying Redis on the development notebook. ### SnowflakeId ``` shell gradle cosid-core:jmh # or java -jar cosid-core/build/libs/cosid-core-1.14.5-jmh.jar -bm thrpt -wi 1 -rf json -f 1 ``` ``` Benchmark Mode Cnt Score Error Units SnowflakeIdBenchmark.millisecondSnowflakeId_friendlyId thrpt 4020311.665 ops/s SnowflakeIdBenchmark.millisecondSnowflakeId_generate thrpt 4095403.859 ops/s SnowflakeIdBenchmark.safeJsMillisecondSnowflakeId_generate thrpt 511654.048 ops/s SnowflakeIdBenchmark.safeJsSecondSnowflakeId_generate thrpt 539818.563 ops/s SnowflakeIdBenchmark.secondSnowflakeId_generate thrpt 4206843.941 ops/s ``` ### Throughput (ops/s) of SegmentChainId

Throughput-Of-SegmentChainId

### Percentile-Sample (*P9999=0.208 us/op*) of SegmentChainId > In statistics, a [percentile](https://en.wikipedia.org/wiki/Percentile) (or a centile) is a score below which a given percentage of scores in its frequency distribution falls (exclusive definition) or a score at or below which a given percentage falls (inclusive definition). For example, the 50th percentile (the median) is the score below which (exclusive) or at or below which (inclusive) 50% of the scores in the distribution may be found.

Percentile-Sample-Of-SegmentChainId

### CosId VS MeiTuan Leaf > CosId (`SegmentChainId`) is 5 times faster than Leaf(`segment`).

CosId VS MeiTuan Leaf

## Community Partners and Sponsors