# VAEAT **Repository Path**: wu-nil/VAEAT ## Basic Information - **Project Name**: VAEAT - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-10 - **Last Updated**: 2025-07-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # VAEAT: Variational AutoeEncoder with Adversaria Training for Multivariate Time Series Anomaly Detection https://www.sciencedirect.com/science/article/pii/S0020025524007667 ## Requirements * PyTorch 1.6.0 * CUDA 10.1 (to allow use of GPU, not compulsory) # Dataset * SMAP and MSL: ``` wget https://s3-us-west-2.amazonaws.com/telemanom/data.zip && unzip data.zip && rm data.zip cd data && wget https://raw.githubusercontent.com/khundman/telemanom/master/labeled_anomalies.csv ``` * SMD: ``` https://github.com/NetManAIOps/OmniAnomaly ``` * SWaT: ``` http://itrust.sutd.edu.sg/research/dataset ``` * Run the code ``` python main.py ``` where `` is one of `SMAP`, `MSL`, `SMD`, `SWAT`, `PSM` ``` @article{HE2024120852, title = {VAEAT: Variational AutoeEncoder with adversarial training for multivariate time series anomaly detection}, author = {Sheng He and Mingjing Du and Xiang Jiang and Wenbin Zhang and Congyu Wang}, journal = {Information Sciences}, volume = {676}, pages = {120852}, year = {2024} } ```