# Deep-Exemplar-based-Video-Colorization_original_20241106 **Repository Path**: yyang181/deep-exemplar-based-video-colorization_original_20241106 ## Basic Information - **Project Name**: Deep-Exemplar-based-Video-Colorization_original_20241106 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-06 - **Last Updated**: 2023-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Exemplar-based Video Colorization (Pytorch Implementation) ### [Paper](https://arxiv.org/abs/1906.09909) | [Pretrained Model](https://facevc.blob.core.windows.net/zhanbo/old_photo/colorization_checkpoint.zip) | [Youtube video](https://youtu.be/HXWR5h5vVYI) :fire: | [Colab demo](https://colab.research.google.com/drive/1Y1XTlTdUG-2LzrH1Vnr_osg9BQavfYsz?usp=sharing) **Deep Exemplar-based Video Colorization, CVPR2019** [Bo Zhang](https://www.microsoft.com/en-us/research/people/zhanbo/)1,3, [Mingming He](http://mingminghe.com/)1,5, [Jing Liao](https://liaojing.github.io/html/)2, [Pedro V. Sander](https://www.cse.ust.hk/~psander/)1, [Lu Yuan](https://www.microsoft.com/en-us/research/people/luyuan/)4, [Amine Bermak](https://eebermak.home.ece.ust.hk/)1, [Dong Chen](https://www.microsoft.com/en-us/research/people/doch/)3
1Hong Kong University of Science and Technology,2City University of Hong Kong, 3Microsoft Research Asia, 4Microsoft Cloud&AI, 5USC Institute for Creative Technologies ## Prerequisites - Python 3.6+ - Nvidia GPU + CUDA, CuDNN ## Installation First use the following commands to prepare the environment: ```bash conda create -n ColorVid python=3.6 source activate ColorVid pip install -r requirements.txt ``` Then, download the pretrained models from [this link](https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization/releases/download/v1.0/colorization_checkpoint.zip), unzip the file and place the files into the corresponding folders: - `video_moredata_l1` under the `checkpoints` folder - `vgg19_conv.pth` and `vgg19_gray.pth` under the `data` folder ## Data Preparation In order to colorize your own video, it requires to extract the video frames, and provide a reference image as an example. - Place your video frames into one folder, _e.g._, `./sample_videos/v32_180` - Place your reference images into another folder, _e.g._, `./sample_videos/v32` If you want to _automatically_ retrieve color images, you can try the retrieval algorithm from [this link](https://github.com/hmmlillian/Gray-Image-Retrieval) which will retrieve similar images from the ImageNet dataset. Or you can try [this link](https://github.com/pochih/CBIR) on your own image database. ## Test ```bash python test.py --image-size [image-size] \ --clip_path [path-to-video-frames] \ --ref_path [path-to-reference] \ --output_path [path-to-output] ``` We provide several sample video clips with corresponding references. For example, one can colorize one sample legacy video using: ```bash python test.py --clip_path ./sample_videos/clips/v32 \ --ref_path ./sample_videos/ref/v32 \ --output_path ./sample_videos/output ``` Note that we use 216\*384 images for training, which has aspect ratio of 1:2. During inference, we scale the input to this size and then rescale the output back to the original size. ## Train We also provide training code for reference. The training can be started by running: ```bash python train.py --data_root [root of video samples] \ --data_root_imagenet [root of image samples] \ --gpu_ids [gpu ids] \ ``` We do not provide the full video dataset due to the copyright issue. For image samples, we retrieve semantically similar images from ImageNet using [this repository](https://github.com/hmmlillian/Gray-Image-Retrieval). Still, one can refer to our code to understand the detailed procedure of augmenting the image dataset to mimic the video frames. ## Comparison with State-of-the-Arts
## More results
:star: Please check our [Youtube demo](https://youtu.be/HXWR5h5vVYI) for results of video colorization. ## Citation If you use this code for your research, please cite our paper. ``` @inproceedings{zhang2019deep, title={Deep exemplar-based video colorization}, author={Zhang, Bo and He, Mingming and Liao, Jing and Sander, Pedro V and Yuan, Lu and Bermak, Amine and Chen, Dong}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={8052--8061}, year={2019} } ``` ## Old Photo Restoration :fire: If you are also interested in restoring the artifacts in the legacy photo, please check our recent work, [bringing old photo back to life](https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life). ``` @inproceedings{wan2020bringing, title={Bringing Old Photos Back to Life}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={2747--2757}, year={2020} } ``` ## License This project is licensed under the MIT license.