# esim-response-selection **Repository Path**: zgxtech_admin/esim-response-selection ## Basic Information - **Project Name**: esim-response-selection - **Description**: ESIM for Multi-turn Response Selection Task - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-29 - **Last Updated**: 2022-06-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ESIM for Multi-turn Response Selection Task ## Introduction If you use this code as part of any published research, please acknowledge one of the following papers. ``` @inproceedings{chen2019sequential, title={Sequential Matching Model for End-to-end Multi-turn Response Selection}, author={Chen, Qian and Wang, Wen}, booktitle={ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7350--7354}, year={2019}, organization={IEEE} } ``` ``` @article{DBLP:journals/corr/abs-1901-02609, author = {Chen, Qian and Wang, Wen}, title = {Sequential Attention-based Network for Noetic End-to-End Response Selection}, journal = {CoRR}, volume = {abs/1901.02609}, year = {2019}, url = {http://arxiv.org/abs/1901.02609}, } ``` ## Requirement 1. gensim ```bash pip install gensim ``` 2. Tensorflow 1.9-1.12 + Python2.7 ## Steps 1. Download the [Ubuntu dataset](https://www.dropbox.com/s/2fdn26rj6h9bpvl/ubuntu_data.zip?dl=0 ) released by (Xu et al, 2017) 2. Unzip the dataset and put data directory into `data/` 3. Preprocess dataset, including concatenatate context and build vocabulary ```bash cd data python prepare.py ``` 4. Train word2vec ```bash bash run_train_word2vec.sh ``` 5. Train and test ESIM, the log information is in `log.txt` file. You could find an example log file in `log_example.txt`. ```bash cd scripts/esim bash run.sh ```